Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 43 (1995), S. 755-761 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract  The enzymatic activity of activated sludge was investigated with special emphasis on the localization of the enzymes in the sludge floc matrix. Activated sludge from an advanced activated-sludge treatment plant, performing biological N and P removal, was used. An enzymatic fingerprint was established using a panel of six different enzymes. The fingerprint revealed peptidase as the most dominating specific enzyme tested. By monitoring sludge bulk enzymatic activity over a 3-month period using fluorescein diacetate as an enzyme substrate, considerable variations in activity were observed even over short periods (a few days). The variation in esterase activity was to some extent correlated to the presence of humic compounds in the sludge, but not to the sludge protein content. Comparison of full sludge enzyme activity to the activity of a batch-grown sludge culture indicated that enzymes accumulated in sludge flocs. A large proportion of the exoenzymes were immobilized in the sludge by adsorption in the extracellular polymeric substances (EPS) matrix. This was demonstrated by extraction of EPS from the activated sludge using cation exchange. Contemporary to the release of EPS a very large fraction of the exoenzymes was released into the water. This showed that the exoenzymes should be considered to be an integrated part of the EPS matrix rather than as direct indicators of the microbial activity or biomass.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 43 (1995), S. 755-761 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The enzymatic activity of activated sludge was investigated with special emphasis on the localization of the enzymes in the sludge floc matrix. Activated sludge from an advanced activated-sludge treatment plant, performing biological N and P removal, was used. An enzymatic fingerprint was established using a panel of six different enzymes. The fingerprint revealed peptidase as the most dominating specific enzyme tested. By monitoring sludge bulk enzymatic activity over a 3-month period using fluorescein diacetate as an enzyme substrate, considerable variations in activity were observed even over short periods (a few days). The variation in esterase activity was to some extent correlated to the presence of humic compounds in the sludge, but not to the sludge protein content. Comparison of full sludge enzyme activity to the activity of a batch-grown sludge culture indicated that enzymes accumulated in sludge flocs. A large proportion of the exoenzymes were immobilized in the sludge by adsorption in the extracellular polymeric substances (EPS) matrix. This was demonstrated by extraction of EPS from the activated sludge using cation exchange. Contemporary to the release of EPS a very large fraction of the exoenzymes was released into the water. This showed that the exoenzymes should be considered to be an integrated part of the EPS matrix rather than as direct indicators of the microbial activity or biomass.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 54 (2000), S. 231-237 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract For biofilm studies, artificial models can be very helpful in studying processes in hydrogels of defined composition and structure. Two different types of artificial biofilm models were developed. Homogeneous agarose beads (50–500 μm diameter) and porous beads (260 μm mean diameter) containing pores with diameters from 10 to 80 μm (28 μm on average) allowed the embedding of cells, particles and typical biofilm matrix components such as proteins and polysaccharides. The characterisation of the matrix structures and of the distribution of microorganisms was performed by confocal laser scanning microscopy. The physiological condition of the embedded bacteria was examined by redox activity (CTC-assay) and membrane integrity (Molecular Probes LIVE/DEAD-Kit). Approximately 35% of the immobilised cells (Pseudomonas aeruginosa SG81) were damaged due to the elevated temperature required for the embedding process. It was shown that the surviving cells were able to multiply when provided with nutrients. In the case of homogeneous agarose beads, cell growth only occurred near the bead surface, while substrate limitation prevented growth of more deeply embedded cells. In the porous hydrogel, cell division was observed across the entire matrix due to better mass transport. It could be shown that embedding in the artificial gel matrix provided protection of immobilized cells against toxic substances such as sodium hypochlorite (0.5 mg/l, 30 min) in comparison to suspended cells, as observed in other immobilized systems. Thus, the model is suited to simulate important biofilm matrix properties.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 19 (1997), S. 118-122 
    ISSN: 1476-5535
    Keywords: Keywords: CTC; activated sludge; bacterial activity; formazan; tetrazolium salt; waste water treatment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The tetrazolium salt 5-cyano-2,3-ditolyltetrazolium chloride (CTC) was used for the determination of metabolically active bacteria in active sludge. The method was adapted and optimized to the conditions of activated sludge. The colorless and nonfluorescent tetrazolium salt is readily reduced to a water-insoluble fluorescent formazan product via the microbial electron transport system and indicates mainly dehydrogenase activity. After more than 2 h incubation, no further formation of new formazan crystals was observed, although the existing crystals in active cells continued to grow at the optimal CTC-concentration of 4 mM. The dehydrogenase activity determined by direct epifluorescence microscopic enumeration did not correlate with cumulative measured activity as determined by formazan extraction. The addition of nutrients did not lead to an increase of CTC-active cells. Sample storage conditions such as low temperature or aeration resulted in a significant decrease in dehydrogenase activity within 30 min. The rapid and sensitive method is well suited for the detection and enumeration of metabolically active microorganisms in activated sludge. Extracellular redox activity was measured with the tetrazolium salt 3′-{1-[phenylamino-) carbonyl]-3,4-tetrazolium}-bis(4-methoxy-6-nitro)benzene-sulfonic acid hydrate (XTT), which remains soluble in its reduced state, after extraction of extracellular polymeric substances (EPS) with a cation exchange resin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...