Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 18 (1997), S. 1415-1430 
    ISSN: 0192-8651
    Keywords: β turns ; peptide structure ; peptide design ; ab initio MO theory ; theoretical conformational analysis ; molecular dynamics ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A systematic quantum chemical study on the structure and stability of the major types of β-turn structures in peptides and proteins was performed at different levels of ab initio MO theory (MP2/6-31G*, HF/6-31G*, HF/3-21G) considering model turns of the general type Ac(SINGLE BOND)Xaa(SINGLE BOND)Yaa(SINGLE BOND)NHCH3 with the amino acids glycine, L- and D-alanine, aminoisobutyric acid, and L-proline. The influence of correlation effects, zero-point vibration energies, thermal energies, and entropies on the turn formation was examined. Solvent effects on the turn stabilities were estimated employing quantum chemical continuum approaches (Onsager's self-consistent reaction field and Tomasi's polarizable continuum models). The results provide insight into the geometry and stability relations between the various β-turn subtypes. They show some characteristic deviations from the widely accepted standard rotation angles of β turns. The stability order of the β-turn subtypes depends strongly on the amino acid type. Thus, the replacement of L-amino acids in the two conformation-determining turn positions by D- or α,α-disubstituted amino acid residues generally increases the turn formation tendency and can be used to favor distinct β-turn subtypes in peptide and protein design. The β-turn subtype preferences, depending on amino acid structure modifications, can be well illustrated by molecular dynamics simulations in the gas phase and in aqueous solution.   © 1997 by John Wiley & Sons, Inc.   J Comput Chem 18: 1415-1430, 1997
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Peptide Science 2 (1996), S. 351-356 
    ISSN: 1075-2617
    Keywords: DPDPE ; enkephalins ; NMR structure analysis ; molecular dynamics simulations ; Chemistry ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The solution conformation of [D-Pen2,D-Pen5] enkephalin (DPDPE), a highly potent δ-selective opioid agonist, was examined by means of NMR, molecular mechanics and molecular dynamics methods. The structural information in the solvent water was obtained employing one- and two-dimensional methods of 1H and 13C-NMR spectroscopy. Based on the distance geometry technique using the ROE data as input, 400 conformers were obtained and considered in the structure analysis. Alternatively, about 2000 conformers were stochastically generated and related to the NMR data after energy minimization. The structure analysis provides one conformer in agreement with all NMR data, which belongs to the lowest energy conformation group. This structure may serve as a reference conformer for DPDPE analogues synthesized with the aim of activity increase.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...