Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0886-1544
    Keywords: cytoskeleton ; cell culture ; gene expression ; Northern blot ; serum-induction ; rat ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Cytochalasin D and dBcAMP cause cultured astrocytes to change from flat cells to retrated process-bearing cells. F-actin was present throughout cells stimulated with dBcAMP for 16 h, whereas cytochalasin D caused F-actin to form massive aggregates at the tips of the cell processes. The two drugs differently regulated the expression of both β-actin and tropomyosin genes in astrocytes cultured in the presence or absence of serum: dBcAMP caused down-regulation and cytochalasin D caused up-regulation. Northern blot analyses indicated that: (1) serum deprivation halved the concentration of all tropomyosin transcripts (TM-1, TM-2, TM-4, TMBr-1, TMBr-2). Serum induced TM-4 via transcriptional activation, independent of protein synthesis, (2) dBcAMP induced down-regulation of β-actin (-50%) and tropomyosin transcripts (-35 to 52%) even in the presence of serum. The concentration of profilin mRNA decreased in dBcAMP-reactive astrocytes (-46%). The decrease in β-actin mRNA concentration was not blocked by cycloheximide, whereas down-regulation of tropomyosin transcripts was completely reversed when protein synthesis was inhibited, and (3) cytochalasin D induced an increase in the concentration of tropomyosin transcripts (+ 69 to 185%) which was cumulative with serum stimulation. Cytochalasin D induction of both β-actin and TM-4 operated through transcriptional activation, independent of protein synthesis.The production of all tropomyosin transcripts examined here were strictly coordinated with β-actin expression in serum-, dBcAMP- and cytochalasin D-treated astrocytes. This indicates that the differential expression of tropomyosin isoforms occurring during astrocyte maturation is due to more complex regulation than that involved in serum- or cAMP-stimulated astrocytes. © 1994 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...