Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 37 (1988), S. 359-370 
    ISSN: 0730-2312
    Keywords: caffeine ; intracellular compartments ; development ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Adenylate cyclase of aggregation phase Dictoystelium discoideum is activated by extracellular adenosine 3′, 5′-cyclic monophosphate (cAMP), and the cAMP syn-thesized is secreted. The distribution of the enzyme was determined in sucrose gradients loaded with whole cell lysates. Cell lysates prepared after 4.5 hr of starvation revealed membranes containing adenylate cyclase at 44% and 33% sucrose. The activity of the latter peak was detected in the presence of the detergent (CHAPS), 3-(3-cholamidopropyl) dimethylammonio-3-propanesulfonate, which inhibited the activity of the former to some extent. Adenylate cyclase activity of the 2 peaks differed with respect to solubility in CHAPS and their kinetics. The 44% sucrose region of the gradient contained the bulk of the plasma membranes, as judged by a cell surface glycoprotein marker (contact site A). The 33% peak is composed of small vesicular structures, as determined by electron microscopy. The distribution of adenylate cyclase activity detected in sucrose gradients shifted from the 33% to the 44% sucrose peak during development. In addition, the 44% peak became increasingly resistant to the inhibitory effect of CHAPS, Both changes were accelerated by extracellular cAMP, but only the latter was abolished when the production of endogeneous cAMP was inhibited by caffeine. Pulsing cells with cAMP overcame the inhibitory effect of caffeine.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 50 (1992), S. 237-244 
    ISSN: 0730-2312
    Keywords: cytoskeleton ; phosphorylation ; platelet ; vinculin ; protein kinase C ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Vinculin is a cytoskeletal protein believed to be involved in linking microfilaments to the cell membrane. it is a substrate for the Ca2+ - and phospholipid-dependent protein kinase C. We show here that when human platelets attach and spread on a solid surface, the α isoforms of vinculin become phosphorylated at serine and/or threonine residues. Phosphorylation is dependent on adhesion to a surface, since suspended, unattached platelets can produce filopodia but no phosphorylation of vinculin. Phosphorylation is also dependent on actin polymerization, as it does not occur when platelets had been pretreated with cytochalasin B. Most likely, protien kinase C is responsible for the phosphorylation of vinculin, since phosphorylation also occurs when platelets are treated with a phorbol ester, which activates protein kinase C, and is blocked by treatment with a staurosporine derivative which inhibits this enzyme. These results suggest that phosphorylation plays a role in anchoring vinculin at sites of microfilament-membrane interaction. © 1992 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...