Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 102 (1993), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Using specific deoxyoligonucleotide probes we have discovered seasonally strong (up to ∼ 100%) dominance of bacteria hybridizing to a single probe, in near shore waters off Scripps pier (32°53′N; 117°15′W). The probes were designed from partially sequenced 16S rRNA (V3 domain) of isolated marine bacteria. The results indicate that this approach may be used for studies of bacterial populations in the marine environment. We have shown that a number of genotypes that at times are dominant in the natural assemblages are culturable (and not, ‘viable-but-unculturable’). Additionally, our data suggests that the discrepancy between viable counts and direct counts in sea water samples can be explained by low plating efficiency.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-184X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Autotrophic and heterotrophic growth characteristics of a nano-flagellate were investigated. The flagellate,Ochromonas sp., was isolated from the northern Baltic Sea. Autotrophic growth was poor. Axenically pregrown flagellates did not increase significantly in cell number during incubation in different inorganic media. The number of flagellates remained constant 3–5 weeks in cultures kept in the light (100μmol m−2 sec−1), whereas in the dark, a high mortality rate was found. Uptake of inorganic14C into an acid-stable fraction indicated thatOchromonas had a functional photosynthetic apparatus. Heterotrophic growth in both liquid medium and medium containing bacteria was rapid. The maximum growth rate corresponded to a generation time of 5.3 hours. Light had no effect on heterotrophic growth. Cells pregrown onEscherichia coli minicells survived without additional bacteria as food when kept in the light, but rapid death occurred in darkness. In conclusion, heterotrophy is the major mechanism to support growth in this species ofOchromonas, but under poor environmental conditions photoautotrophy might be a strategy for survival rather than growth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...