Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 14 (1976), S. 583-589 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The polymerization of butadiene and copolymerization of butadiene-styrene with alkylsodium catalyst modified by crown ethers in hydrocarbon solvent has been investigated. This catalyst system produced polybutadiene of high viscosity (2.0-5.0) and high vinyl content (80%) in high conversion (75-95%). These results are in contrast to those obtained with aliphatic ether-modified alkylsodium polymerization which typically gives products of low molecular weight and at low conversion. The copolymerization of butadiene-styrene with alkylsodium catalyst modified by crown ethers gave a copolymer which did not contain block styrene. Although the copolymer did not contain block styrene, there was an unusually high level of incorporation of styrene in the copolymer at low conversion. This behavior is quite different from either modified organolithium or unmodified organosodium initiators, in which the styrene is uniformly and randomly incorporated along the chain.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 17 (1979), S. 1771-1777 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: It was found that N,N,N′,N′-tetramethylethylene diamine and hexamethyl phosphorus triamide minimize chain transfer reactions in the polymerization of 1,3-butadiene in hydrocarbon solvent with alkylsodium or alkylpotassium initiators. The polymers obtained with alkylsodium initiators had a high molecular weight and high vinyl content at 90-95% conversion. The molecular weight of the polybutadiene made by alkylsodium and alkylpotassium initiators was dependent on the polymerization temperatures and modifier ratios, but the vinyl contents were independent of the modifier ratios. Vinyl contents of alkylpotassium-initiated polymers showed a slight dependency on polymerization temperature; the vinyl contents of alkylsodium-initiated polymers were independent of temperature. Addition of lithium tert-butoxide and potassium tert-amylate to these initiators in the presence of the modifiers affected the molecular weight but not the microstructure.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 14 (1976), S. 573-581 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A high molecular weight polybutadiene was prepared in hexane solvent by using alkali metal (Li, Na, K) and metal tert-butoxide (Li, Na, K) as a polymerization initiator. The microstructure of polybutadiene varies, depending on the type of modifiers and polymerization and temperatures. The results and mechanistic implications of this study are discussed.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...