Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 197 (1998), S. 439-450 
    ISSN: 1432-0568
    Keywords: Key words Meckel’s cartilage ; Chondrocyte ; Transformation ; Resorption ; Apoptosis ; Mouse ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  It is unknown whether cells in the midportion of Meckel’s cartilage undergo transformation into other kinds of cell or whether resorption of cells occurs during development. Therefore, the midportion of Meckel’s cartilage from the mouse and the rat was subdivided into anterior and posterior portions. The ultimate fates of these tissues were analyzed with a focus on resorption-related cells, death of chondrocytes by apoptosis, and transformation of the chondrocytes themselves. Cellular and extracellular features of mouse Meckel’s cartilage were observed after von Kossa’s staining and staining for acid phosphatase (APase) activity, as well as by light and electron microscopy. To identify resorbing cells, immunostaining specific for macrophages and staining for tartrate-resistant acid phosphatase (TRAP) were performed. The DNA nick end-labeling (TUNEL) method was used for the detection of death of chondrocytes by apoptosis. The replacement of the extracellular matrix of rat Meckel’s cartilage was examined with double immunofluorescence staining for type I and type II collagens. When the anterior midportion from embryonic mice on day 18 was examined after von Kossa’s staining, it was clear that the extracellular matrix had already calcified and vascularization had been initiated that reflected the calcified matrix. TRAP staining and immunostaining for macrophages revealed two types of osteoclast and macrophages that were involved in resorption of the matrix. In the posterior midportion, no vascular invasion was evident, and chondrocytes were transformed directly into fibroblastic cells by phenotypic conversion. In such cells we found reaction products specific for APase activity, suggestive of the intracellular degradation of fine collagenous fibrils. Double immunofluorescence staining showed that cartilage-specific type II collagen was replaced by type I collagen with the phenotypic transformation to fibroblastic cells. There were no significant changes in the number of TUNEL-positive apoptotic cells from day 17 of gestation to day 6 after parturition. Death of chondrocytes by apoptosis was not, therefore, involved directly in the disappearance of Meckel’s cartilage. These results in the posterior midportion served as an instance of phenotypic switches in differentiated cells from chondrocytes to fibroblast-like cells. The present study indicates that there is a difference between the ultimate fate of cells in the posterior part and that of cells in the anterior part in the midportion of Meckel’s cartilage in the mouse and rat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0568
    Keywords: Meckel's cartilage ; Organ culture ; Transformation ; Calcification ; Osteocyte-like cell
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We examined whether Meckel's cartilage of embryonic mice, 17 days in utero, undergo the cellular transformation into the osteocyte-like phenotype under organ culture conditions. Explants were grown by our original pithole method modified Trowell-type cultures for up to 4 weeks at 37° C under 5% CO2 in air. Specimens were examined using histological procedures including immunostaining and electron microscopy. In addition, the effects of β-glycerophosphate on matrix calcification were also examined in cultures with or without β-glycerophosphate. Addition of β-glycerophosphate induced calcification at a higher level, but calcium mineral deposition occurred regardless of the addition of β-glycerophosphate to the culture medium. Light and electron microscopic analyses showed that freshly isolated chondrocytes prior to cell culture had typical hypertrophic morphology, but shortly after commencement of culture, they showed morphological modifications. The cells showing chondrocytic phenotypes became basophilic elliptical cells, and eventually transformed into flattened osteocyte-like cells. Bone-like features for cellular elements were characterized by spindle-shaped cells with elongated processes accompanying bone-specific thickbanded collagen fibrils. Immunostaining showed that at 2 weeks in culture, type I and type II collagens coexisted in the matrix, but subsequently type II collagen synthesis ceased and was replaced by type I collagen synthesis. Immunofluorescent labeling for osteocalcin was noted first in the peripheral cells by 1 week, but at 3 weeks this reaction spread to the central zone in explants. Alkaline phosphatase activity (ALPase) was expressed on the cells in the central zone prior to calcium mineral deposition as shown by von Kossa's reaction at 3 weeks in culture. These results showed that Meckel's cartilage chondrocytes in organ culture synthesize bone-type proteins accompanying osteocytic phenotype expression.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...