Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Book
    Book
    New York, NY [u.a.] :Springer,
    Title: Pyomo - optimization modelling in Python /; 67
    Contributer: Hart, William E.
    Publisher: New York, NY [u.a.] :Springer,
    Year of publication: 2012
    Pages: XVIII, 237 S. : , Ill., graph. Darst.
    Series Statement: Springer optimization and its applications 67
    ISBN: 978-1-4614-3225-8 , 1-4614-3225-1 , 978-1-4614-3226-5
    Type of Medium: Book
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0192-8651
    Keywords: automated docking ; binding affinity ; drug design ; genetic algorithm ; flexible small molecule protein interaction ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A novel and robust automated docking method that predicts the bound conformations of flexible ligands to macromolecular targets has been developed and tested, in combination with a new scoring function that estimates the free energy change upon binding. Interestingly, this method applies a Lamarckian model of genetics, in which environmental adaptations of an individual's phenotype are reverse transcribed into its genotype and become heritable traits (sic). We consider three search methods, Monte Carlo simulated annealing, a traditional genetic algorithm, and the Lamarckian genetic algorithm, and compare their performance in dockings of seven protein-ligand test systems having known three-dimensional structure. We show that both the traditional and Lamarckian genetic algorithms can handle ligands with more degrees of freedom than the simulated annealing method used in earlier versions of AUTODOCK, and that the Lamarckian genetic algorithm is the most efficient, reliable, and successful of the three. The empirical free energy function was calibrated using a set of 30 structurally known protein-ligand complexes with experimentally determined binding constants. Linear regression analysis of the observed binding constants in terms of a wide variety of structure-derived molecular properties was performed. The final model had a residual standard error of 9.11 kJ mol-1 (2.177 kcal mol-1) and was chosen as the new energy function. The new search methods and empirical free energy function are available in AUTODOCK, version 3.0.   © 1998 John Wiley & Sons, Inc.   J Comput Chem 19: 1639-1662, 1998
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...