Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: In situ phosphorylation of the presynaptic protein kinase C substrate B-50 was investigated in rat hippocampal slices incubated with the convulsant drug 4-aminopyridine (4-AP). Phosphorylation of B-50 was significantly enhanced 1 min after the addition of 4-AP (100 μM). This increase by 4-AP was concentration dependent (estimated EC50 30–50). Concomitant with the changes in B-50 phosphorylation, 4-AP also dose-dependently stimulated [3H]noradrenaline ([3H]NA) release from the slices. 4-AP stimulated [3H]NA release within 5 min to seven times the control level. The B-50 phosphorylation induced by 4-AP remained elevated after removal of the convulsant, this in contrast to B-50 phosphorylation induced by depolarization with K+. A similar persistent increase was observed for [3H]NA release after a 5-min incubation period with 4-AP. These results give more insight into the molecular mechanisms underlying 4-AP-induced epileptogenesis and provide further evidence for the correlation between B-50 phosphorylation and neurotransmitter release in the hippocampal slice.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Recently we have shown that 4-aminopyridine (4-AP), a drug known to enhance transmitter release, stimulates the phosphorylation of the protein kinase C substrate B-50 (GAP-43) in rat brain synaptosomes and that this effect is dependent on the presence of extracellular Ca2+. Hence, we were interested in the relationship between changes induced by 4-AP in the intracellular free Ca2+ concentration ([Ca2+]i) and B-50 phosphorylation in synaptosomes. 4-AP (100 μM) elevates the [Ca2+]i (as determined with fura-2) to approximately the same extent as depolarization with 30 mM K+ (from an initial resting level of 240 nM to ∼480 nM after treatment). However, the underlying mechanisms appear to be different: In the presence of 4-AP, depolarization with K+ still evoked an increase in [Ca2+]i, which was additive to the elevation caused by 4-AP. Several Ca2+ channel antagonists (CdCl2, LaCl3, and diphenylhydantoin) inhibited the increase in B-50 phosphorylation by 4-AP. It is interesting that the increase in [Ca2+]i and the increase in B-50 phosphorylation by 4-AP were attenuated by tetrodotoxin, a finding pointing to a possible involvement of Na+ channels in this action. These results suggest that 4-AP (indirectly) stimulates both Ca2+ influx and B-50 phosphorylation through voltage-dependent channels by a mechanism dependent on Na+ channel activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Nonadrenergic imidazoline-specific binding sites were characterized pharmacologically in crude cerebral membrane preparations, but little is known about their subcellular localization in neurons. As in the brain-stem these sites are involved in cardiovascular regulation and peripherally imidazolines modulate neurotransmitter release, we tried to determine a possible (pre)synaptic localization in brainstem. We found a specific enrichment in (entire) synaptosome, purified synaptosomal plasma membrane (37 fmol/mg), and mitochondrial (83 fmol/mg) fractions as compared with other membrane fractions (3–8 fmol/mg). Synaptosomes appeared to be free of postsynaptic structures, and purified synaptosomal plasma membranes were devoid of mitochondrial material, as determined by electron microscopy and by comparison with the distribution of marker enzymes such as monoamine oxidase. These results show for the first time that these extramitochondrial imidazoline-specific sites are neuronal and are located on presynaptic terminals. We found high affinities for unlabeled p-iodoclonidine (subnanomolar), clonidine (0.2 nM), and efaroxan (11 nM), but idazoxan did not compete significantly for the p-[125I]iodoclonidine binding in these membranes. Therefore, these sites can be classified as I1 imidazoline receptors. In summary, we describe for the first time that high-affinity I1 receptors of the bovine brainstem are located on (pre)synaptic membranes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...