Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 53 (1997), S. 747-755 
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Lysozyme has been crystallized using the ESA Advanced Protein Crystallization Facility onboard the NASA Space Shuttle Orbiter during the IML-2 mission. CCD video monitoring was used to follow the crystallization process and evaluate the growth rate. During the mission some tetragonal crystals were observed moving over distances of up to 200 μm. This was correlated with microgravity disturbances caused by firings of vernier jets on the Orbiter. Growth-rate measurement of a stationary crystal (which had nucleated on the growth reactor wall) showed spurts and lulls correlated with an onboard activity: astronaut exercise. The stepped growth rates may be responsible for the residual mosaic block structure seen in crystal mosaicity and topography measurements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 56 (2000), S. 868-880 
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: A comprehensive study of microgravity and ground-grown chicken egg-white lysozyme crystals is presented using synchrotron X-ray reciprocal-space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed reduced intrinsic mosaicities on average, but no differences in terms of strain over their ground-grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the ground-control case only a small volume of the crystal contributed to the intensity at the diffraction peak. The techniques prove to be highly complementary, with the reciprocal-space mapping providing a quantitative measure of the crystal mosaicity and strain (or variation in lattice spacing) and the topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out at the synchrotron.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Peanut lectin binds T-antigen [Galβ(1–3)GalNAc] with an order of magnitude higher affinity than it binds the disaccharide lactose. The crystal structures of the two complexes indicate that the higher affinity for T-antigen is generated by two water bridges involving the acetamido group. Fresh calorimetric measurements on the two complexes have been carried out in the temperature range 280–313 K. Four sets of nanosecond molecular-dynamics (MD) simulations, two at 293 K and the other two at 313 K, were performed on each of the two complexes. At each temperature, two somewhat different protocols were used to hydrate the complex in the two runs. Two MD runs under slightly different conditions for each complex served to assess the reliability of the approach for exploring protein–ligand interactions. Enthalpies based on static calculations and on MD simulations favour complexation involving T-antigen. The simulations also brought to light ensembles of direct and water-mediated protein–sugar interactions in both the cases. These ensembles provide a qualitative explanation for the temperature dependence of the thermodynamic parameters of peanut lectin–T-antigen interaction and for the results of one of the two mutational studies on the lectin. They also support the earlier conclusion that the increased affinity of peanut lectin for T-antigen compared with that for lactose is primarily caused by additional water bridges involving the acetamido group. The calculations provide a rationale for the observed sugar-binding affinity of one of the two available mutants. Detailed examination of the calculations point to the need for exercising caution in interpreting results of MD simulations: while long simulations are not possible owing to computational reasons, it is desirable to carry out several short simulations with somewhat different initial conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 50 (1994), S. 236-236 
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: An error in the paper by Naismith, Habash, Harrop, Helliwell, Hunter, Wan, Weisgerber, Kalb & Yariv [Acta Cryst. (1993), D49, 561–571] is corrected. The first sentence of the caption for Fig. 6 on p. 568 should read: The S1 (Cd2+) and S2 (Ca2+) metal sites.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: The molecular structures of cobalt- and nickel-substituted concanavalin A have been refined at 1.6 and 2.0 Å resolution, respectively. Both metal derivatives crystallize in space group I222 with approximate cell dimensions a = 89, b = 87 and c = 63 Å and one monomer in the asymmetric unit. The final R factor for Co-substituted concanavalin A is 17.8% for 29 211 reflections with F 〉 1.0σ(F) between 8.0 and 1.6 Å. For Ni-substituted concanavalin A the final R factor is 15.9% for 16 128 reflections with F 〉 1.0σ(F) between 8.0 and 2.0 Å resolution. Both structures contain a transition-metal binding site and a calcium-binding site but, unlike Cd-substituted concanavalin A, do not have a third metal-binding site. The Co-substituted concanavalin A structure diffracts to the highest resolution of any concanavalin A structure reported to date. A comparison of the structures of Ni-, Co-, Cd-substituted and native concanavalin A gives an indication of coordinate errors, which is a useful baseline for comparisons with saccharide complexes of concanavalin A described in other work. We also give a detailed account of multiple conformations which were found for five side-chain residues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: The three-dimensional structure of the complex between methyl α-D-mannopyranoside and concanavalin A has been refined at 2.0 Å resolution. Diffraction data were recorded from a single crystal (space group P212121, a = 123.7, b = 128.6, c = 67.2 Å) using synchrotron radiation at a wavelength of 1.488 Å. The final model has good geometry and an R factor of 19.9% for 58 871 reflections (82% complete), within the resolution limits of 8 to 2 Å, with F 〉 1.0σ(F). The asymmetric unit contains four protein subunits arranged as a dimer of dimers with approximate 222 point symmetry. Each monomer binds one saccharide molecule. Each sugar is bound to the protein by hydrogen bonds and van der Waals contacts. Although the four subunits are not crystallographically equivalent, the protein–saccharide interactions are nearly identical in each of the four binding sites. The differences that do occur between the four sites are in the structure of the water network which surrounds each saccharide; these networks are involved in crystal packing. The structure of the complex is compared with a refined saccharide-free concanavalin A structure. The saccharide-free structure is composed of crystallographically identical subunits, again assembled as a dimer of dimers, but with exact 222 symmetry. In the saccharide complex the tetramer association is different in that the monomers tend to separate resulting in fewer intersubunit interactions. The average temperature factor of the mannoside complex is considerably higher than that of the saccharide-free protein. The binding site in the saccharide-free structure is occupied by three ordered water molecules and the side chain of Asp71 from a neighbouring molecule in the crystal. These occupy positions similar to those of the four saccharide hydroxyls which are hydrogen bonded to the site. Superposition of the saccharide-binding site from each structure shows that the major changes on binding involve expulsion of these ordered solvents and the reorientation of the side chain of Tyrl00. Overall the surface accessibility of the saccharide decreases from 370 to 100 Å2 when it binds to the protein. This work builds upon the earlier studies of Derewenda et al. [Derewenda, Yariv, Helliwell, Kalb (Gilboa), Dodson, Papiz, Wan & Campbell (1989). EMBO J. 8, 2198–2193] at 2.9 Å resolution, which was the first detailed study of lectin–saccharide interactions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: The enzyme hydroxymethylbilane synthase (HMBS, E.C. 4.3.1.8) catalyzes the conversion of porphobilinogen into hydroxymethylbilane, a key intermediate for the biosynthesis of heme, chlorophylls, vitamin B12 and related macrocycles. The enzyme is found in all organisms, except viruses. The crystal structure of the selenomethionine-labelled enzyme ([SeMet]HMBS) from Escherichia coli has been solved by the multi-wavelength anomalous dispersion (MAD) experimental method using the Daresbury SRS station 9.5. In addition, [SeMet]HMBS has been studied by MAD at the Grenoble ESRF MAD beamline BM14 (BL19) and this work is described especially with respect to the use of the ESRF CCD detector. The structure at ambient temperature has been refined, the R factor being 16.8% at 2.4 Å resolution. The dipyrromethane cofactor of the enzyme is preserved in its reduced form in the crystal and its geometrical shape is in full agreement with the crystal structures of authentic dipyrromethanes. Proximal to the reactive C atom of the reduced cofactor, spherical density is seen consistent with there being a water molecule ideally placed to take part in the final step of the enzyme reaction cycle. Intriguingly, the loop with residues 47–58 is not ordered in the structure of this form of the enzyme, which carries no substrate. Direct experimental study of the active enzyme is now feasible using time-resolved Laue diffraction and freeze-trapping, building on the structural work described here as the foundation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 57 (2001), S. 1219-1229 
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: The molecular basis of the camouflage colouration of marine crustacea is often provided by carotenoproteins. The blue colour of the lobster carapace, for example, is intricately associated with a multimacromolecular 16-mer complex of protein subunits each with a bound astaxanthin molecule. The protein subunits of crustacyanin fall into two distinct subfamilies, CRTC and CRTA. Here, the crystal structure solution of the A1 protein of the CRTC subfamily is reported. The problematic nature of the structure solution of the CRTC proteins (both C1 and A1) warranted consideration and the development of new approaches. Three putative disulfides per protein subunit were likely to exist based on molecular-homology modelling against known lipocalin protein structures. With two such subunits per crystallographic asymmetric unit, this direct approach was still difficult as it involved detecting a weak signal from these sulfurs and suggested the use of softer X-rays, combined with high data multiplicity, as reported previously [Chayen et al. (2000), Acta Cryst. D56, 1064–1066]. This paper now describes the structure solution of CRTC in the form of the A1 dimer based on use of softer X-rays (2 Å wavelength). The structure solution involved a xenon derivative with an optimized xenon LI edge f'' signal and a native data set. The hand of the xenon SIROAS phases was determined by using the sulfur anomalous signal from a high-multiplicity native data set also recorded at 2 Å wavelength. For refinement, a high-resolution data set was measured at short wavelength. All four data sets were collected at 100 K. The refined structure to 1.4 Å resolution based on 60 276 reflections has an R factor of 17.7% and an Rfree of 22.9% (3137 reflections). The structure is that of a typical lipocalin, being closely related to insecticyanin, to bilin-binding protein and to retinol-binding protein. This A1 monomer or dimer can now be used as a search motif in the structural studies of the oligomeric forms α- and β-crustacyanins, which contain bound astaxanthin molecules.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 49 (1993), S. 120-128 
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Synchrotron radiation has been used extensively to overcome a variety of technical challenges involved in data collection from macromolecular crystals. The next generation of such sources offer a higher brilliance at much shorter wavelengths than hitherto available. Hence, the quality of X-ray diffraction data from crystals of biological macromolecules will be further improved in terms of reduced systematic and random errors, in conjunction with a very high degree of completeness of, and multiple measurements within, the data set. Real data sets should be able to approach closely the quality of ideal data sets. Tests at CHESS are described of the feasibility of recording protein crystal diffraction patterns at ultra-short wavelengths (λ = 0.3 Å) and very-short wavelengths (λ = 0.5 Å), in monochromatic rotating crystal geometry.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 49 (1993), S. 561-571 
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: The three-dimensional structure of cadmium-substituted concanavalin A has been refined using X-PLOR. The R factor on all data between 8 and 2 Å is 17.1%. The protein crystallizes in space group I222 with cell dimensions a = 88.7, b = 86.5 and c = 62.5 Å and has one protein subunit per asymmetric unit. The final structure contains 237 amino acids, two Cd ions, one Ca ion and 144 water molecules. One Cd ion occupies the transition-metal binding site and the second occupies an additional site, the coordinates of which were first reported by Weinzierl & Kalb [FEBS Lett. (1971), 18, 268–270]. The additional Cd ion is bound with distorted octahedral symmetry and bridges the cleft between the two monomers which form the conventional dimer of concanavalin A. This study provides a detailed analysis of the refined structure of saccharide-free concanavalin A and is the basis for comparison with saccharide complexes reported elsewhere.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...