Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Chemical reviews 21 (1921), S. 431-437 
    ISSN: 1520-6890
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 24 (1932), S. 867-870 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 73 (1987), S. 236-241 
    ISSN: 1432-1939
    Keywords: Chironomidae ; Electivity ; Foraging behavior ; Predator avoidance ; Tube dwelling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In laboratory experiments, I studied differential susceptibility of four co-occurring species of chironomids to a predatory damselfly. The chironomids differed in foraging behavior and could be ranked according to the amount of time they spent outside of their tubes. In choice experiments, the predator consistently selected the prey which spent more time out of the tube, and time out of tube was a significant predictor of the predation rate coefficient. Electivity indices, calculated from field samples and diet analyses of the predator, supported the laboratory results. The data suggest that exposure to predators in a heterogeneous prey community is largely determined by tubedwelling behavior.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5117
    Keywords: limnocorral ; ecosystem control ; bottom up-top down ; nutrient addition ; fish manipulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To assess the potential impact of human exploitation on arctic lakes and to determine how these eco systems are regulated we initated a limnocorral experiment in Toolik Lake, Alaska, in the summer of 1983. The limnocorrals were 5 m in diameter and from 5–6 m in depth and were open to the sediments. In 1983 four limnocorrals were deployed in an isolated bay of Toolik Lake within a cross-classified treatment regime of high and low inorganic nitrogen and phosphorus additions and high and low free swimming fish additions. The objective of the nutrient addition was to stimulate phytoplankton growth and determine the extent to which increased plant production was passed through pelagic and benthic food chains. The objective of the fish addition was to determine the impact of fish predation on large-bodied zooplankton, especially the zooplanktivorous copepod Heterocope, then to study the effect of altered Heterocope densities on small-bodied zooplankton species population dynamics. In 1984 two more limnocorrals were deployed, one a low fish, 1 × nutrient addition treatment and the other a no fish, no nutrient treatment. The fish manipulation was changed to confining several fish in cages with the cages held in corrals for varying lengths of time. The addition of inorganic nitrogen and phosphorus dramatically increased phytoplankton productivity. This increase in algal biomass and production greatly altered the light environment and water quality in the nutrient treated limnocorrals. The secchi disk depth in the nutrient treated limnocorrals declined each summer reaching as low as 1 m in 1985. Both oxygen content and pH increased in the nutrient treatment corrals. Corrals not receiving nutrient additions remained near lake concentrations for most water quality parameters. While phytoplankton biomass was stimulated in 1983 phytoplankton growth was not sufficient to draw down all the nitrogen and phosphorus added and these nutrients reached high levels in the last half of the summer. In 1984 phosphorus remained above 20 µg in the nutrient-treated corrals but ammonia dropped to reference levels by day 25. In 1985 both nutrient concentrations rapidly declined to reference levels. Most pelagic components responded to the nutrient additions. Microbial production was stimulated in the nutrient treated limnocorrals and bacterial population sizes built up to nearly 8–10 times those of the reference corrals. However, microheterotrophs soon increased in abundance and apparently grazed down bacteria to reference levels. Phytoplankton population density, as estimated by chlorophyll a determinations, increased dramatically with nutrient addition such that each year the phytoplankton densities were higher than before. Primary productivity was also stimulated and appeared not to be light limited even when phytoplankton densities rose to high levels. In the first two years of the experiment zooplankton densities were little altered by the increased phytoplankton densities. However, by 1985 daphnid densities were quite a bit higher in the high nutrient addition limnocorrals. The benthic community and sediment response was much less affected by nutrient addition. Overall sediment respiration increased in the nutrient treated corrals but underlying sediments seemed little affected. Decomposition of Carex litter was likewise little affected by nutrient addition. Benthic invertebrates were also little impacted by the nutrient addition and increased sedimentation of phytoplankton. However, the response of benthic invertebrates is difficult to assess fully in the current experiment because chironomids, a prominent component of the benthic community, failed to recruit into the limnocorrals and the corrals physically shifted during ice-out in the spring of 1984 disturbing the sediment in several corrals. The fish additions in 1983 of free swimming grayling essentially eliminated large bodied zooplankton, especially Heterocope septentrionalis, from all four limnocorrals. In subsequent summers Heterocope were not so dramatically preyed upon but generally were found in higher densities in the low or no fish treatments. However, either when Heterocope were eliminated in 1983 or were in rough inverse proportion to fish density, altered Heterocope abundance had no obvious affect on small-bodied zooplankton abundance. The fish treatment apparently influenced the zooplankton response to high nutrient addition in 1985. In the high nutrient limnocorrals daphnid populations became very abundant, but in the high fish treatment the daphnid responding was the small-bodied D. longiremis while in the low fish treatment the daphnid responding was the large-bodied D. middendorffiana. Thus we have considerable evidence for bottom up control of phytoplankton density and production. This increased production ultimately, but not for two years, stimulated zooplankton density increases. Increased nutrients had little effect on the benthos or sediments. Fish manipulations influenced large-bodied zooplankton but had little effect on small-bodied zooplankton. Because grayling are predominantly plankton feeders in lakes, no fish effect on benthic invertebrates was expected. Limnocorrals thus seem good systems to study nutrient-phytoplankton interactions. They are not as suitable for benthic invertebrate studies and fish manipulations may be difficult. Most other limnocorral studies were of brief duration; however, in the present study the limnocorrals seemed to perform well over a three year period.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...