Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 27 (1994), S. 272-283 
    ISSN: 0886-1544
    Keywords: cell cycle ; transcription ; mRNA decay ; autoregulation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The single alpha-tubulin gene of Tetrahymena thermophila was isolated from a genomic library and shown to encode a single protein. Comparisons of the rates of evolution of this gene with other alpha-tubulin sequences revealed that it belongs to a group of more evolutionarily constrained alpha-tubulin proteins in animals, plants, and protozoans versus the group of more rapidly evolving fungal and variant animal alpha-tubulins. The single alpha-tubulin of Tetrahymena must be used in a variety of microtubule structures, and we suggest that equivalently conserved alpha-tubulins in other organisms are evolutionarily constrained because they, too, are multifunctional. Reduced constraints on fungal tubulins are consistent with their simpler microtubule systems. The animal variant alpha-tubulins may also have diverged because of fewer functional requirements or they could be examples of specialized tubulins. To analyze the role of tubulin gene expression in regulation of the complex microtubule system of Tetrahymena, alpha-tubulin mRNA amounts were examined in a number of cell states. Message levels increased in growing versus starved cells and also during early stages of conjugation. These changes were correlated with increases in transcription rates. Additionally, alpha-tubulin mRNA levels oscillate in a cell cycle dependent fashion caused by changes in both transcription and decay rates. Therefore, as in other organisms, Tetrahymena adjusts alpha-tubulin message amounts via message decay. However the complex control of alpha-tubulin mRNA during the Tetrahymena life cycle involves regulation of both decay and transcription rates. © 1994 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 58 (1995), S. 83-94 
    ISSN: 0730-2312
    Keywords: colorectal cancer ; tyrosine phosphate ; tyrosine kinase ; genistein ; geldanamycin ; RNA stability ; transcription ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We tested the potential impact of tyrosine phosphorylation on the expression of the c-myc gene in tow colon cancer cell lines, HCT8 and SW837. We found that the protein tyrosine kinase inhibitor genistein causes a decrease in the aboundace of c-myc RNA and an inhibition of proliferation with a similar dose response. Geldanamycin, a mechanistically different tyrosine kinase inhibitor, also causes a decrease in both the expression of cmyc RNA and proliferation. Genistein has also been found to inhibit topoisomerase II, but the topoisomerase II inhibitor novobiocin did not lower the expression of c-myc. The most likely interpretation is that inhibition of protein tyrosine kinase activity caused a decrease in c-myc expression in these cells. The impact of tyrosine phosphorylation on the experssion of the c-myc gene is further supported by the finding that inhibition of phosphotyrosine phosphatase using orthovanadate causes an increase in the level of c-myc RNA. The effect of genistein on HCT8 cells is not dependent on the synthesis of new protein and does not involve an allteration in the stability of the massage. Analysis of transcription in the cmyc gene reveals a more complicated picture with a decrease in initiation and an increase in elongation but no net change in transcription. We speculate that the genistein induced reduction in myc experssion is the result of a posttranscriptional intranuclear event(s). © Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...