Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 116 (1994), S. 6307-6315 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 117 (1995), S. 1638-1640 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 115 (2001), S. 8620-8633 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We develop a replica generalization of the reference interaction site model (replica RISM) integral equation theory to describe the structure and thermodynamics of quenched-annealed systems comprising polar molecular species. It provides a successful approach to realistic models of molecular liquids, and properly allows for the effect of a quenched disordered matrix on the sorbed liquid. The description can be extended to an electrolyte solution in a disordered material containing charged chemical functionalities that determine its adsorption character. The replica reference interaction site model (RISM) equations are complemented with the hypernetted chain (HNC) closure and its partial linearization (PLHNC), adequate to ionic and polar molecular liquids. In these approximations, the excess chemical potentials are derived in a closed analytical form. We extend the description to a quenched-annealed system with soft-core interaction potentials between all species, in which the liquid and matrix equilibrium distributions are characterized in general by two different temperatures. The replica RISM/PLHNC-HNC theory is applied to water sorbed in a quenched disordered microporous network of atoms associated into interconnected branched chains, with activating polar groups grafted to matrix chains. The results are in qualitative agreement with experiment for water confined in disordered materials. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 2793-2805 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We modify the site–site as well as three-dimensional (3D) versions of the reference interaction site model (RISM) integral equations with the hypernetted chain (HNC) closures by adding a repulsive bridge correction (RBC). The RBC treats the overestimation of water ordering around a hydrophobic solute in the RISM/HNC approximation, and thus refines the entropic component in the hydration free energy. We build up the bridge functions on r−12 repulsive core potentials, and propose RBC expressions for both the site–site and 3D-RISM approaches. To provide fast calculation, we obtain the excess chemical potential of hydration by using the thermodynamic perturbation theory (TPT). The site–site RISM/HNC+RBC as well as 3D-RISM/HNC+RBC approaches are applied to calculate the structure and thermodynamics of hydration of rare gases and alkanes in ambient water. For both approaches, the RBC drastically improves the agreement of the hydration chemical potential with simulation data and provides its correct dependence on the solute size. For solutes of a nonspherical form, the 3D treatment yields the hydration structure in detail and better fits simulation results, whereas the site–site approach is essentially faster. The TPT approximation gives the hydration thermodynamics in good qualitative agreement with the exact results of the thermodynamic integration, and substantially reduces computational burden. The RBC–TPT approximation can improve the predictive capability of the hybrid algorithm of a generalized-ensemble Monte Carlo simulation combined with the site–site RISM theory, used to describe protein folding with due account for the water effect at the microscopic level. The RBC can be optimized for better fit to reference simulation data, and can be generalized for solute molecules with charged groups. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 10391-10402 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We adapt the three-dimensional reference interaction site model (3D-RISM) to calculate the potentials of mean force for ion–molecular solution as a difference between the chemical potential of solvation of a cluster of solutes and of individual ones. The method yields the solvation structure around the cluster of solutes in detail. The solvation chemical potential is obtained for the three-dimensional hypernetted chain (3D-HNC) closure as well as for its partial linearization (3D-PLHNC approximation). The solvation chemical potential is obtained in a closed analytical form for both the 3D-HNC and 3D-PLHNC closures. The 3D-RISM integral equations are solved by using the supercell technique. A straightforward supercell treatment of ionic solute in polar molecular solvent leads to a big error in the potential of mean force as well as the solvation chemical potential, which for simple ions in water amounts to about 35 kcal/mol. We elaborated corrections to the 3D-RISM integral equations, alleviating the artifact of the supercell periodicity with an accuracy of 0.05 kcal/mol or better and restoring the long-range asymptotics of the solute–solvent correlation functions. The dielectrically consistent site–site RISM/HNC theory (DRISM/HNC) is employed for the solvent correlations to provide a proper description of the dielectric properties of solution. This allowed us to extend the description to solution at a finite salt concentration. We converge both the 3D-RISM and site–site DRISM integral equations by using the method of modified direct inversion in the iterative subspace. Owing to the proper initial guess of the correlation functions, iteration begins at once for a given temperature and full molecular charge, avoiding a gradual decrease of the temperature and increase of the site charges, which greatly reduces the computation time. We calculate and discuss the potentials of mean force for sodium chloride in ambient water at infinite dilution as well as at a finite concentration. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 10403-10417 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We applied the three-dimensional reference interaction site model (3D-RISM) integral equation theory with the 3D hypernetted chain (3D-HNC) closure or its partial linearization (3D-PLHNC) to obtain the potentials of mean force (PMFs) and the solvation structure of sodium chloride in ambient water. The bulk solvent correlations are treated by the dielectrically consistent site–site RISM/HNC theory (DRISM/HNC) to provide a proper description of the dielectric properties of solution and to include the case of a finite salt concentration. The PMF is calculated as a difference in the solvation free energy of an ion pair and of individual ions. We obtained and analyzed in detail the PMFs and solvation structure for ion pairs of NaCl at infinite dilution and a concentration of 1 M. The results are in reasonably good agreement with molecular dynamics simulations for the same model of the solution species. Positions and orientations of water molecules in the first solvation shell around the ion pair are deduced. The short-range hydration structure of the ion pairs at infinite dilution and at moderate concentration is very similar. Ionic ordering and clustering is found in 1 M solution. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 115 (2001), S. 6653-6662 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: An integral equation for rigid-body molecules with respect to site-density distribution function under arbitrary external fields is derived by the density-functional theory. Using a grand canonical partition function of molecular systems, we extend original Percus' idea to molecular fluids. The extended Percus' idea provides a relation between the site–site pair distribution function and site–density distribution function under an external field composed of the site–site interaction potentials of a molecule fixed at the origin. The site–density integral equation combined with the extended Percus' relation to molecular fluids gives a closure relation of reference interaction site model equation. The site–site pair distribution functions of homonuclear diatomic Lennard-Jones fluids obtained by the integral equation agree well with those of Monte Carlo simulation. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 9830-9836 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We study the hydration structure and free energy of several conformations of Met-enkephalin in ambient water by employing the one-dimensional (1D) as well as three-dimensional (3D) reference interaction site model (RISM) integral equation theories, complemented by the hypernetted chain (HNC) closure with the repulsive bridge correction (RBC). The RBC contribution to the excess chemical potential of solvation is calculated by means of the thermodynamic perturbation theory (TPT), which crucially reduces computational burden and thus is especially important for a hybrid algorithm of the RISM with molecular simulation. The 3D-RISM/HNC+RBC-TPT approach provides improved prediction of the solvation thermodynamics and gives a detailed description of the solvation structure of a biomolecule. The results obtained are discussed and compared to those following from the 1D-RISM/HNC theory. The latter yields physically reasonable results for the conformational stability of biomolecules in solution, which is further improved by adding the 1D-RBC. The modified, 1D-RISM/HNC+RBC-TPT integral equation theory combined with the simulated annealing or generalized-ensemble Monte Carlo simulation methods is capable of reliable prediction of conformations of biomolecules in solution with due account for the solvent effect at the microscopic level. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 9463-9468 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have developed a three-dimensional (3D) extension of the reference interaction site model-self-consistent field (RISM-SCF) method to treat the electronic structure of a solvated molecule. The site–site treatment of the solute–solvent correlations involving the approximation of radial averaging constitutes a bottleneck of the RISM-SCF method, and thus lacks a 3D picture of the solvation structure for complex solutes. To resolve this problem, we devised out a 3D generalization of the RISM integral equations which yields the 3D correlation functions of interaction sites of solvent molecules around a solute of arbitrary shape. In the present article, we propose a SCF combination of the ab initio molecular orbital (MO) methods and 3D-RISM approach. A benchmark result for carbon monoxide in ambient water is also presented. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 100 (1994), S. 1477-1491 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The dynamic solvation time correlation function Z(t) is, within linear response, formulated in terms of the intermolecular solute–solvent interactions, without recourse to the intrinsically macroscopic concept of a cavity carved out of a dielectric medium. For interaction site models (ISM) of both the solute and the solvent, the theory relates the fluctuating polarization charge density of the solvent to the fluctuating vertical energy gap that controls Z(t). The theory replaces the factual (or bare) solute charge distribution by a surrogate expressed in terms of the solute–solvent site–site direct correlation functions. Calculations for solute ions in water and in acetonitrile lead to Z(t) and the second moment of the associated spectral density in good agreement with molecular dynamics simulation results in the literature. We also use the theory to calculate Z(t) for model solutes in which the "sudden'' change of the charge distribution involves multipoles of higher order. The response is qualitatively similar in the various cases studied here.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...