Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 116 (2002), S. 7509-7517 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have developed a new type of stimulated Raman adiabatic passage (STIRAP) that is applicable to a degenerated reaction system. The direction of the photon polarization vector is the adiabatic parameter in the STIRAP. The molecular handedness of H2POSH, a preoriented phosphinotioic acid that has two stable configurations, L and R enantiomers, is used as a model system. The control of molecular handedness in both pure and mixed state cases are considered. In the case of a pure state, a STIRAP with a linearly polarized single laser allows an almost complete transfer from an L (R) enantiomer to the other by adiabatically changing its polarization direction. The adiabatic criterion for changing the polarization direction is clarified. In the case of a mixed state, a STIRAP with two linearly polarized laser pulses allows a selective preparation of pure enantiomers from its racemic mixture. In the low temperature limit, a five-level model reduces a three-level model by setting the direction of the polarization of the pump and Stokes pulses in such a way that only the forward transfer is allowed, while the reverse is forbidden. Furthermore, in the case of mixed state, relaxation effects originating from vibrational mode couplings are taken into account, and the influence of the population decay from intermediate states on the STIRAP is compared with that by a π-pulse approach. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 1575-1581 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present a method for the design of laser fields to control a selective preparation of enantiomers from their racemate. An expression for two components of the laser pulses [EX(t) and EY(t)] propagating along the Z axis is derived using a locally optimized control theory in the density operator formalism. This expression was applied to a selective preparation of (R-, L-) enantiomers from preoriented phosphinotioic acid (H2POSH) at low temperatures. The target operator was set for the populations to be localized in one side of the double-well potential. First, a simple one-dimensional model was treated. Then, a two-dimensional model in which a free rotation around the preoriented torsional axis is included was briefly considered. In the one-dimensional model, almost complete preparation of the enantiomers was obtained. The optimal electric field consists of a sequence of two linearly polarized pulses with the same phases but with different magnitudes. This means that the resultant electric field is linearly polarized with the polarization for obtaining the R-form nearly parallel to its S–H bond. The optimal electric field transfers the L-form into the R-form while suppressing the reverse process. In the two-dimensional model, the enantiomer selective preparation is controlled by a sequence of circularly polarized pulses. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...