Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 27 (1994), S. 287-298 
    ISSN: 0886-1544
    Keywords: cilium ; flagellum ; motility ; microtubules ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: A physical model developed to explain microtubule sliding patterns in the trypsintreated ciliary axoneme has been extended to investigate the generation of bending moments by microtubules sliding in an axoneme in which the dublets are anchored at one end. With sliding restricted, a bending moment is developed by the polarized shearing interaction between neighbouring doublets, effected by the activity of dynein arms on doublet N pushing N + 1 in a tipward ( + ) direction. In arrested axonemes in which arms on several contiguous doublets are active, the bending moment causes splitting of the 9 + 2 microtubule array into two or more sets of doublets. In the absence of special constraints, splitting depends only on breaking the circumferential interdoublet links most distorted by the bending moment. The analysis, which permits assignment of arm activity to specific microtubules in each of the observed patterns of splitting, indicates that the axoneme will split between doublet N and N + 1 if arms on doublet N are inactive and arms on either N + 1 or N-1 are active. To produce the observed major splits, dynein arms on the microtubules of roughly one-half of the axoneme are predicted to be active, in a manner consistent with the switch-point hypothesis of ciliary motion. Electron microscopic examination indicates that virtually every set of doublets in the split axonemes retains its cylindrical form. Maintenance of cylindrical symmetry can be ascribed to the mechanical properties of the unbroken links, which may resist both tensile and compressive stress, and to active dynein arms. © 1994 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 27 (1994), S. 299-312 
    ISSN: 0886-1544
    Keywords: microtubule motors ; dynein ; cilia ; axoneme ; computer modeling ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: This study considers the relationship between two structural forms of the 22S dynein arm of Tetrahymena thermophila: the bouquet and the compact arm. The compact arm differs from the bouquet and from other proposed forms (e.g., the “toadstool”) in that the globular domains are situated transversely across the interdoublet gap with one globular subunit, the head, proximal to the adjacent doublet microtubule. The other models place all three globular domains proximal to the neighboring doublet microtubule. When sliding of an isolated axoneme is induced, at least 57% of total attached arms on exposed doublets are in the compact form within dimensions of 24 × 24 × 12 nm, and only about 2% of the arms are bouquets. Toadstools are incompatible with the images seen. Bouquets are not found in regions of the doublet protected by a neighboring doublet. When axonemes with exposed doublets are treated with 0.5 M KCl for 30 min, the compct arms and the dynein heavy (H)-chains disappear, while isolated bouquets and dynein H-chains appear in the medium, suggesting that the compact arms give rise to the bouquets as they are solubilized. The bouquet is the predominant form of isolated 22S dynein molecules, which are found in two apparently enantiomorphic forms, within dimensions 45 × 39 × 13 nm; bouquets attached to doublets have dimensions similar to those of isolated bouquets. Computer modeling indicates that in an intact standard-diameter axoneme, these dimensions are incompatible with the interdoublet volume available for an arm; the bouquet therefore represents an unfolded compact arm. A plausible sequence of changes can be modeled to illustrate the conversion of an attached compact arm to an attached and then free bouquet. The toadstool is probably an artifact that arises after unfolding. Consistent with the conformational difference, H-chains of attached compact arms differ from those of isolated bouquets in their susceptibility to limited proteolysis. These results suggest that the compact arm, rather than the unfolded bouquet or the toadstool, is the functional form of the outer arm in the intact axoneme. © 1994 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...