Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1009
    Keywords: Acid precipitation ; Acidification ; New Hampshire ; Ponds ; Rock weathering ; Stream chemistry ; Streams ; White Mountains
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The streams tributary to acidic Cone Pond, pH 4.5–4.8, and circumneutral Black Pond, pH 5.3–6.4, in the White Mountains of New Hampshire, USA, were monitored for a year. The watersheds of these two ponds were characterized in terms of geology and stream hydrology. Chemical gradients and patterns in rock weathering and groundwater discharge explain many of the differences in mineral content and acidity of the streams. The rocks of Black watershed produced an average of ten times the equivalent of basic cations as rocks from Cone watershed. This is on the same order as the difference in acidity of the two streams. Down-stream changes in stream chemistry follow differing patterns, but reflect the same principle of residence time and water path length controlling chemical evolution of streamwater. Watershed and aquatic managers may use these parameters in an inexpensive and simple assessment of the susceptibility of individual streams and ponds to acidification. A method is recommended to determine quickly the potential influence of bedrock type to aquatic chemistry.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 11 (1975), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : Experimental cuttings on two small, hardwood-forested watersheds in New England showed that annual streamflow can be increased as much as 41 percent. Most of the increase occurred in summer and early autumn when additional streamflow is most needed. Revegetation caused the annual increases to nearly disappear within 4 years after complete forest clearing.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1009
    Keywords: Organic matter ; Watershed management ; Connecticut ; Forest utilization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The objective of this research was to evaluate the impacts of increasing product removal on biomass and nutrient content of a central hardwood forest ecosystem. Commercial thinning, currently the most common harvesting practice in southern New England, was compared with whole-tree clearcutting or maximum aboveground utilization. Using a paired-watershed approach, we studied three adjacent, first-order streams in Connecticut. During the winter of 1981–82, one was whole-tree clearcut, one was commercially thinned, and one was designated as the untreated reference. Before treatment, living and dead biomass and soil on the whole-tree clearcut site contained 578 Mg ha−1 organic matter, 5 Mg ha−1 nitrogen, 1 Mg ha−1 phosphorus, 5 Mg ha−1 potassium, 4 Mg ha−1 calcium, and 13 Mg ha−1 magnesium. An estimated 158 Mg ha−1 (27% of total organic matter) were removed during the whole-tree harvest. Calcium appeared to be the nutrient most susceptible to depletion with 13% of total site Ca removed in whole-tree clearcut products. In contrast, only 4% (16 Mg ha−1) of the total organic matter and ⩽2% of the total nutrients were removed from the thinned site. Partial cuts appear to be a reliable management option, in general, for minimizing nutrient depletion and maximizing long-term productivity of central hardwood sites. Additional data are needed to evaluate the long-term impacts of more intensive harvests.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1009
    Keywords: Acid precipitation ; Biomass nutrients ; Calcium ; Clearcutting ; Magnesium ; Nitrogen ; Phosphorus ; Potassium ; Soil leaching ; Soil nutrients ; Timber harvest ; Weathering ; Whole-tree harvest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Both harvest removal and leaching losses can deplete nutrient capital in forests, but their combined long-term effects have not been assessed previously. We estimated changes in total soil and biomass N, Ca, K, Mg, and P over 120 years from published data for a spruce-fir site in Maine, two northern hardwood sites in New Hampshire, central hardwood sites in Connecticut and Tennessee, and a loblolly pine site in Tennessee. For N, atmospheric inputs counterbalance the outputs, and there is little long-term change on most sites. For K, Mg, and P, the total pool may decrease by 2%–10% in 120 years depending on site and harvest intensity. For Ca, net leaching loss is 4–16 kg/ha/yr in mature forests, and whole-tree harvest removes 200–1100 kg/ha. Such leaching loss and harvest removal could reduce total soil and biomass Ca by 20%–60% in only 120 years. We estimated unmeasured Ca inputs from rock breakdown, root-zone deepening, and dry deposition; these should not be expected to make up the Ca deficit. Acid precipitation may be the cause of current high leaching of Ca. Although Ca deficiency does not generally occur now in acid forest soils, it seems likely if anthropogenic leaching and intensive harvest removal continue.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-515X
    Keywords: Acid neutralizing capacity ; acidification ; aluminum ; dissolved organic carbon ; lake ; watershed
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Cone Pond is one of the few acidic, clear-water ponds in the White Mountains of New Hampshire, a region dominated by high inputs of strong acids from atmospheric deposition and low base content of bedrock. Monitoring was conducted for 13 months to compare and contrast the acid-base chemistry of the terrestrial and aquatic portions of the watershed. Variations in Al concentration and speciation in drainage waters were correlated with changes in the supply of naturally occurring organic ligands. During the study period, the pond retained 28% of Al inputs, including nearly half of the inputs of organically complexed Al. Chemical equilibrium calculations indicated that the entire water-column was oversaturated with respect to the solubility of synthetic gibbsite during summer, as was the hypolimnion during winter. Retention of Al resulted from an increase in pH in the hypolimnion concomitant with SO4 2− reduction, and from loss of organic anions in epilimnetic waters. Acid neutralizing capacity (ANC) generated in the pond primarily through SO4 2− reduction and base cation (C B ) release was balanced by ANC consumed as a result of Al retention.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-515X
    Keywords: C:N ratio ; dissolved organic carbon ; dissolved organic nitrogen ; nitrogen ; stream chemistry ; watershed
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Relatively high deposition ofnitrogen (N) in the northeastern United States hascaused concern because sites could become N saturated.In the past, mass-balance studies have been used tomonitor the N status of sites and to investigate theimpact of increased N deposition. Typically, theseefforts have focused on dissolved inorganic forms ofN (DIN = NH4-N + NO3-N) and have largelyignored dissolved organic nitrogen (DON) due todifficulties in its analysis. Recent advances in themeasurement of total dissolved nitrogen (TDN) havefacilitated measurement of DON as the residual of TDN− DIN. We calculated DON and DIN budgets using data onprecipitation and streamwater chemistry collected from9 forested watersheds at 4 sites in New England. TDNin precipitation was composed primarily of DIN. Netretention of TDN ranged from 62 to 89% (4.7 to 10 kghaminus 1 yrminus 1) of annual inputs. DON made up themajority of TDN in stream exports, suggesting thatinclusion of DON is critical to assessing N dynamicseven in areas with large anthropogenic inputs of DIN.Despite the dominance of DON in streamwater,precipitation inputs of DON were approximately equalto outputs. DON concentrations in streamwater did notappear significantly influenced by seasonal biologicalcontrols, but did increase with discharge on somewatersheds. Streamwater NO3-N was the onlyfraction of N that exhibited a seasonal pattern, withconcentrations increasing during the winter months andpeaking during snowmelt runoff. Concentrations ofNO3-N varied considerably among watersheds andare related to DOC:DON ratios in streamwater. AnnualDIN exports were negatively correlated withstreamwater DOC:DON ratios, indicating that theseratios might be a useful index of N status of uplandforests.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-2932
    Keywords: nitrification ; nitrogen ; nitrogen mineralization ; soil water ; stream chemistry ; wilderness area
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Nitrogen (N) deposition and its impact on terrestrial and aquatic ecosystems is a concern facing federal land managers at the Lye Brook Wilderness in Vermont and other protected aras throughout the northeastern United States. In this study, we compared N production in soils with N concentrations and outputs in leachates to determine how forest cover types differ in regulating N losses. Also, precipitation inputs and modeled estimates of streamwater outputs were used to calculate a watershed N budget. Most ammonium and nitrate were produced in organic soils with deciduous cover. Softwood stands had low net nitrification rates and minimal N leaching. A comparison of watershed inputs and outputs showed a net gain in total dissolved N (5.5 kg ha-1 yr-1) due to an accumulation of dissolved inorganic N. The Lye Brook Wilderness ecosystem has N budgets similar to other forested ecosystems in the region, and appears to be assimilating the accumulating N. However seasonal losses of nitrate observed in mineral soils and streamwater may be early warnings of the initial stages of N saturation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 23 (1984), S. 359-374 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The effects of storm dynamics on precipitation chemistry were examined using an atmospheric budget for SO4 − . One hundred storms occurring between 1975 and 1978 at Hubbard Brook Experimental Forest in New Hampshire were used as test data. Concentrations of major ions were usually greater in convective storms than in continuous or layer storms. For example the geometric mean concentrations of SO4 − in convective and continuous storms were 4.1 and 1.1 mg L−1, respectively. Higher SO4 − concentrations also occurred when surface wind directions were south or southwest. The summer maximum in convective activity along with the seasonal dependence of surface wind directions and the seasonal atmospheric chemistry cycle can account for the summer maximum in SO4 − concentrations observed in the northeastern United States.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 26 (1985), S. 163-173 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract We measured buffer capacity for major horizons of forest soils from four locations in New England by titration of field-moist samples with either HCl or NaOH. Titration curves for O horizons were nearly linear over a wide pH range, that is, buffer capacity was independent of pH. Titration curves for mineral horizons were S-shaped with ambient pH roughly in the middle of the least buffered part of the curve. We also measured exchangeable acid cations and NH4 + in unbuffered KCl extractions and exchangeable bases in NH4OAc extraction at pH 7. Ca+2 and Mg+2 in KCl extractions at ambient pH were only slightly less than in NH4OAc extractions at pH 7, implying that exchangeable bases did not depend much on the extraction pH. The O horizons were generally highly base saturated at ambient pH even though their pH was low; mineral soils had lower base saturation. Buffer capacity measured over the first 0.5 pH unit to the acid side depended strongly on organic matter fraction in the sample. All soil materials studied had buffer capacities per unit organic mass of about 100 meq kg inf0 sup−1 pH−1. Acid rain at pH 4.0 in New England would take at least several decades to lower pH of the soil profile by a whole pH unit.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 34 (1987), S. 325-338 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract A study was undertaken to examine whether ‘acid pulses’ from snowmelt created permanent changes in a pond's chemistry. Water samples were collected from clearwater acidic Cone Pond in the White Mountain National Forest, New Hampshire. The pond, inlet, and outlet were intensively sampled throughout winter and early spring 1983–84. Thaws brought more H+ into upper waters of the pond, but most was gone within a week. In contrast, SO4 2− and Al showed dilution with increased streamflow into the pond, and NO3 − was only detected in ice, slush, and surface waters. Bottom waters were anoxic throughout the winter and had pH 6.0 compared to 4.7 for most of the water column. Alkalinity at the bottom rose from 0 in November 1983 to 190 μeq L−1 in April 1984. Between November and April the pond gained Al but lost SO4 2− and H+. Most of the Al gain came after ice-out when loading through the inlet increased, but during the final snowmelt a temporary increase in Al concentration was also seen throughout the water column.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...