Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 50 (1994), S. 826-832 
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: The crystal structure of glutaminase–asparaginase from Acinetobacter glutaminasificans has been reinterpreted and refined to an R factor of 0.171 at 2.9 Å resolution, using the same X-ray diffraction data that were used to build a preliminary model of this enzyme [Ammon, Weber, Wlodawer, Harrison, Gilliland, Murphy, Sjölin & Roberts (1988). J. Biol. Chem. 263, 150–156]. The current model, which does not include solvent, is based in part on the related structure of Escherichia coli asparaginase and is significantly different from the structure of the enzyme from A. glutaminasificans described previously. The reason for the discrepancies has been traced to insufficient phasing power of the original heavy-atom derivative data, which could not be compensated for fully by electron-density modification techniques. The corrected structure of A. glutaminasificans glutaminase–asparaginase is presented and compared with the preliminary model and with the structure of E. coli asparaginase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 53 (1997), S. 551-557 
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: The structure of toxin II from the scorpion Androctonus australis Hector has been determined ab initio by direct methods using SnB at 0.96 Å resolution. For the purpose of this structure redetermination, undertaken as a test of the minimal function and the SnB program, the identity and sequence of the protein was withheld from part of the research team. A single solution obtained from 1 619 random atom trials was clearly revealed by the bimodal distribution of the final value of the minimal function associated with each individual trial. Five peptide fragments were identified from a conservative analysis of the initial E-map, and following several refinement cycles with X-PLOR, a model was built of the complete structure. At the end of the X-PLOR refinement, the sequence was compared with the published sequence and 57 of the 64 residues had been correctly identified. Two errors in sequence resulted from side chains with similar size while the rest of the errors were a result of severe disorder or high thermal motion in the side chains. Given the amino-acid sequence, it is estimated that the initial E-map could have produced a model containing 99% of all main-chain and 81% of side-chain atoms. The structure refinement was completed with PROFFT, including the contributions of protein H atoms, and converged at a residual of 0.158 for 30 609 data with F ≥ 2σ(F) in the resolution range 8.0–0.964 Å. The final model consisted of 518 non-H protein atoms (36 disordered), 407 H atoms, and 129 water molecules (43 with occupancies less than unity). This total of 647 non-H atoms represents the largest light-atom structure solved to date.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 52 (1996), S. 87-92 
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: The crystal structure of the snake toxin fasciculin 2, a potent acetylcholinesterase inhibitor from the venom of the green mamba (Dendroaspis angusticeps), has been determined by the molecular-replacement method, using the fasciculin 1 model and refined to 2.0 Å resolution. The introduction of an overall anisotropic temperature factor improved significantly the quality of the electron-density map. It suggests, as it was also indicated by the packing, that the thermal motion along the unique axis direction is less pronounced than on the (ab) plane. The final crystallographic R factor is 0.188 for a model having r.m.s. deviations from ideality of 0.016 Å for bond lengths and 2.01° for bond angles. As fasciculin 1, fasciculin 2 belongs to the three-finger class of Elapidae toxins, a structural group that also contains the α-neurotoxins and the cardiotoxins. Although the two fasciculins have, overall, closely related structures, the conformation of loop I differs appreciably in the two molecules. The presence of detergent in crystallization medium in the case of fasciculin 2 appears to be responsible for the displacement of the loop containing Thr9. This conformational change also results in the formation of a crystallographic dimer that displays extensive intermolecular interactions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Molecular Biology 238 (1994), S. 88-103 
    ISSN: 0022-2836
    Keywords: Androctonus australis Hector ; X-ray ; crystal structure ; high resolution ; scorpion toxin
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...