Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The chromosomes of several widely used laboratory derivatives of Streptomyces coelicolor A3(2) were found to have 1.06 Mb inverted repeat sequences at their termini (i.e. long-terminal inverted repeats; L-TIRs), which are 50 times the length of the 22 kb TIRs of the sequenced S. coelicolor strain M145. The L-TIRs include 1005 annotated genes and increase the overall chromosome size to 9.7 Mb. The 1.06 Mb L-TIRs are the longest reported thus far for an actinomycete, and are proposed to represent the chromosomal state of the original soil isolate of S. coelicolor A3(2). S. coelicolor A3(2), M600 and J1501 possess L-TIRs, whereas approximately half the examined early mutants of A3(2) generated by ultraviolet (UV) or X-ray mutagenesis have truncated their TIRs to the 22 kb length. UV radiation was found to stimulate L-TIR truncation. Two copies of a transposase gene (SCO0020) flank 1.04 Mb of DNA in the right L-TIR, and recombination between them appears to generate strains containing short TIRs. This TIR reduction mechanism may represent a general strategy by which transposable elements can modulate the structure of chromosome ends. The presence of L-TIRs in certain S. coelicolor strains represents a major chromosomal alteration in strains previously thought to be genetically similar.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The chromosomes of the soil bacteria Streptomyces, unlike those of most other bacteria, are linear DNA molecules. Their telomeres contain long-terminal inverted repeats and covalently bound terminal proteins (TPs). These bacteria also harbour linear plasmids that share the same structural features. In this study, we demonstrated that the TP was covalently bound to the 5′ ends as proposed previously. A linear plasmid with chromosomal telomeres was constructed and used to purify the TPs of the Strep-tomyces coelicolor A3(2) chromosome. A 20 kDa protein and its 10 kDa degradation product were isolated and their sequences determined by mass spectrometry. The coding sequence (tpgC) was about 100 kb from the right end of the chromosome. Two tpg homologues were identified by sequencing the 50 kb linear plasmid SLP2 of Streptomyces lividans: tpgSLP2 at 6 kb from the left end and a putative tpg pseudogene at 8 kb from the right. The latter was in a terminal repeat shared by the right end of SLP2 and both ends of the S. lividans chromosome. The lack of the typical Streptomyces codon preference in this open reading frame suggests that it is a pseudogene. The close physical linkage between the tpg genes and their cognate telomeres would favour their co-segregation and co-evolution. All the Tpg polypeptides are similar in length (184–185 amino acids) and sequences, which include a putative helix domain that is homologous to part of the DNA-binding ‘thumb’ domain of HIV reverse transcriptase, and a putative amphiphilic beta-sheet that may be involved in the observed self-aggregation of the TP and/or the proposed membrane binding.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Molecular microbiology 47 (2003), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: SLP2 is a 50 kb linear plasmid in Streptomyces lividans that contains short (44 bp) terminal inverted repeats and covalently bound terminal proteins. The nucleotide sequence of SLP2 was determined. The  rightmost 15.4 kb sequence is identical to that of the host chromosome, including the Tn4811 sequence at the border, which is interrupted by an insertion sequence (IS) element in SLP2. Examination of the flanking target sequences of Tn4811 suggests a previous recombinational event there. The 43 putative protein coding sequences contained many involved in replication (including two terminal protein homologues), partitioning, conjugal transfer and intramycelial spread. The terminally located helicase-like gene ttrA was necessary for conjugal transfer. The two telomeres diverge significantly in primary sequence, while preserving similar secondary structures. Mini-linear plasmids containing these telomeres replicated in S. lividans using the chromosomally encoded terminal protein. In addition, two pseudotelomere sequences are present near the left telomere. The G+C content and GC or AT skew profiles exhibit complex distributions. These, plus the inferred recombination at the right arm, indicate that SLP2 has evolved through rounds of exchanges involving at least three replicons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The chromosomes of the Gram-positive soil bacteria Streptomyces are linear DNA molecules, usually of about 8 Mb, containing a centrally located origin of replication and covalently bound terminal proteins (which are presumably involved in the completion of replication of the telomeres). The ends of the chromosomes contain inverted repeats of variable lengths. The terminal segments of five Streptomyces chromosomes and plasmids were cloned and sequenced. The sequences showed a high degree of conservation in the first 166–168 bp. Beyond the terminal homology, the sequences diverged and did not generally cross-hybridize. The homologous regions contained seven palindromes with a few nucleotide differences. Many of these differences occur in complementary pairs, such that the palindromicity is preserved. Energy-optimized modelling predicted that the 3′ strand of the terminal palindromes can form extensive hairpin structures that are similar to the 3′ ends of autonomous parvovirus genomes. Most of the putative hairpins have a GCGCAGC sequence at the loop, with the potential to form a stable single C-residue loop closed by a sheared G:A pairing. The similarity between the terminal structures of the Streptomyces replicons and the autonomous parvoviral genomes suggests that they may share some structural and/or replication features.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...