Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 58 (1992), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Previous results from our laboratory suggest that long-term treatment of primary cultured bovine adrenal medullary (BAM) chromaffin cells with nicotine or phorbol 12-myristate 13-acetate, either of which directly activates protein kinase C (PKC), increases the mRNA levels encoding catecholamine-synthesizing enzymes and proenkephalin. In the present study, we have examined the effects of nicotine on BAM cell PKC activity with special emphasis on long-term effects. Nicotine increased particulate PKC activity in a concentration-dependent manner when measured using in vitro enzyme assay with histone as the substrate. This effect is mediated through nicotinic cholinergic receptors, because 1,1-dimethylphenylpiperazinium, a nicotinic agonist, had a similar effect. In addition, chlorisondamine, a specific nicotine-receptor blocking drug, antagonized the effect of nicotine. Nicotine also increased specific [3H]phorbol 12,13-dibutyrate ([3H]PdBu) binding within 1 min, the effect of which was maximal between 3 and 12 min. This effect was reversed by chlorisondamine similarly after 12 min and after 18 h of nicotine treatment, indicating that continual nicotinic-receptor occupancy is required for persistent PKC activation. Compared to PKC activation, the onset of nicotine-stimulated diacylglycerol production was slow, and it was observed after 12 min of incubation with nicotine. The diacylglycerol levels, specific [3H]PdBu binding, and PKC activity remained significantly elevated for at least 18 h with continuous nicotine incubation. Furthermore, nicotine increased the PKC immunoreactivity of a particulate protein with a molecular mass of 82 kDa in the western blot. These results suggest that nicotinic-receptor activation increases PKC activity and immunoreactivity in BAM cells. The long-term PKC activation may serve several functions, such as activation of mRNA production and a negative feedback regulation of either nicotinic receptors or voltage-dependent Ca2+ channels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The contribution of an ω-conotoxin GVIA (ωCgtx)-sensitive Ca2+ influx pathway to the effects of angiotensin II (AII) receptor activation was examined in bovine adrenal medullary (BAM) cells. Pretreatment of BAM cells with 10–6MωCgtx blocked stimulation of exocytosis by the degradation-resistant analogue, sarcosine1–angiotensin II (S1-AII). In contrast, ωCgtx had no effect on basal secretion, nor did it inhibit [3H]norepinephrine and [32P]ATP release in response to bradykinin, another phospholipase C-linked receptor agonist. Similarly, ωCgtx pretreatment inhibited the stimulation of 45Ca2+ uptake by S1-AII, but did not affect the response to bradykinin. This selective inhibition did not appear to be due to blockade of AII receptors by ωCgtx, as the accumulation of 3H-labeled inositol phosphates in response to S1-AII was not inhibited. The peak S1-AII-stimulated increase in the intracellular free Ca2+ concentration (Cai) in fura 2-loaded BAM cells also was not significantly reduced by ωCgtx (or by stimulating in nominally Ca2+-free buffer), indicating that this response is dependent on intracellular Ca2+ pools. However, a small ωCgtx-sensitive Cai response was detected after depletion of intracellular Ca2+ pools with ionomycin. This study shows that AII receptors, but not bradykinin receptors, are linked to an ωCgtx-sensitive Ca2+ influx pathway in BAM cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 47 (1986), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Rats were given 75 mg/kg of 5,5-diphenylhydantoin (phenytoin) or vehicle 30 min prior to 75 mg/kg of 1, 1, 1-trichloro-bis(p-chlorophenyl)ethane (p, p'-DDT) (p.o.) or chlordecone (i.p.) and tremor was measured 12 h later. Rats were then killed, and regional brain levels of biogenie amines and their acid metabolites and amino acids were determined. Pretreatment with phenytoin significantly attenuated the tremor produced by p, p'-DDT but enhanced that produced by chlordecone. p, p'-DDT had significant effects on the levels of asparate, glutamate, 5-hydroxyindoleacetic acid (5-HIAA), and 3-methoxy-4-hydroxyphenylglycol (MHPG), whereas chlordecone increased glycine, 5-HIAA, and MHPG levels. Pretreatment with phenytoin blocked p.p'-DDT-induced increases of aspartate in the brainstem and spinal cord, 5-HIAA in the hippocampus, and MHPG in the brainstem and hypothalamus. Phenytoin significantly enhanced chlordecone-induced increases of MHPG in the brainstem. These data indicate that organo-chlorine-induced increases in noradrenergic activity in the brainstem and spinal cord may be directly related to the tremorigenic effects of these chemicals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Male, Fischer strain 344 adult rats were given various doses (25–100 mg/kg) of p,p′-DDT by oral gavage, and levels of biogenic amines, their metabolites, and amino acid neurotransmitters, tremor activity, and rectal temperature were measured at several intervals (2, 5, 12, and 24 h) after dosing. Dose-related increases in rectal temperature and in tremor activity were observed at 50–100 mg/kg 12 h after dosing. Tremorigenic doses of DDT increased the 5-hydroxyindoleacetic acid (5-HIAA) level in hypothalamus, brainstem, and striatum, whereas doses of 75 and 100 mg/kg increased the 3-methoxy-4-hydroxyphenylglycol (MHPG) level in hypothalamus and brainstem and the 3,4-dihydroxyphenylacetic acid level in striatum. Six amino acids were assayed in the brainstem, hypothalamus, and striatum; aspartate and glutamate levels were increased only in brainstem at 25–100 mg/kg. No consistent changes in concentrations of taurine, glutamine, glycine, or γ-aminobutyric acid were observed in any of the regions assayed. Time-related increases in rectal temperature were seen 2–12 h after dosing, and the presence of tremor was observed 5–12 h after dosing; for both the time of peak effect was at 12 h. The DDT-induced hyperthermia and tremor were associated with dose- and time-related increases in levels of 5-HIAA, MHPG, aspartate, and glutamate. It is suggested that an increase in the turnover rate of 5-hydroxy-tryptamine (5-HT) may be responsible for the DDT-induced hyperthermia, whereas increases in the metabolism of 5-HT and norepinephrine may be involved in the tremor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...