Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Diabetologia 37 (1994), S. 863-870 
    ISSN: 1432-0428
    Keywords: Key words Non-insulin-dependent diabetes mellitus ; pancreatic islet ; insulin secretion ; glucose metabolism.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Insulin secretion and glucose metabolism were compared in islets isolated from GK Wistar rats (a non-obese, spontaneous model of non-insulin-dependent diabetes mellitus) and control Wistars aged 8 and 14 weeks. By 8 weeks of age, GK Wistar rats were clearly diabetic as indicated by non-fasting plasma glucose concentrations and impaired glucose tolerance. Islet insulin content was not significantly different to controls at either age. In islets from 14-week-old GK Wistar rats glucose-stimulated insulin release (6–16 mmol/l glucose) was significantly reduced to 25–50 % of controls in static incubations (p 〈 0.001). In perifusion, glucose-stimulated insulin release was reduced by 90 % for first phase (p 〈 0.01) and by 75 % for second phase (p 〈 0.05). The responses to arginine and 2α Ketoisocaproate in islets were similar to those in controls. In contrast, islets isolated from 8-week-old GK Wistar rats exhibited no significant reduction in glucose-stimulated insulin secretion in static incubations. In perifusion, although both first and second phases of glucose-stimulated insulin release were slightly reduced, these were not significantly different to controls. Islets from 8-week-old GK Wistar rats failed however to respond to stimulation by glyceraldehyde. Raising the medium glucose concentration to 16 mmol/l significantly increased rates of glucose utilisation ([3H] H2O production from 5-[3H] glucose) and oxidation ([14C] CO2 production from U-[14C] glucose) in islets isolated from 8-week-old control and GK Wistar rats, respectively. The rates of oxidation were not significantly different at stimulatory glucose concentrations whereas the rates of utilisation were significantly higher in islets from the diabetic animals (p 〈 0.05). Production of [3H] H2O from 2-[3H] glycerol metabolism was increased (p 〈 0.05) at 2 mmol/l glucose but was not significantly different to controls at 16 mmol/l glucose in islets from 8-week-old GK Wistar rats. This data would suggest that abnormalities in islet function are present in 8-week-old diabetic animals although these do not seriously impair glucose-stimulated insulin release from isolated islets. This in turn would indicate that a defect in the glucose signalling pathway in beta cells is not a primary cause of the diabetes of GK Wistar rats and that deterioration of the secretory response is the consequence of some factor associated with the diabetic condition. [Diabetologia (1994) 37: 863–870]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Diabetologia 37 (1994), S. 863-870 
    ISSN: 1432-0428
    Keywords: Non-insulin-dependent diabetes mellitus ; pancreatic islet ; insulin secretion ; glucose metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Insulin secretion and glucose metabolism were compared in islets isolated from GK Wistar rats (a non-obese, spontaneous model of non-insulin-dependent diabetes mellitus) and control Wistars aged 8 and 14 weeks. By 8 weeks of age, GK Wistar rats were clearly diabetic as indicated by non-fasting plasma glucose concentrations and impaired glucose tolerance. Islet insulin content was not significantly different to controls at either age. In islets from 14-week-old GK Wistar rats glucose-stimulated insulin release (6–16 mmol/l glucose) was significantly reduced to 25–50% of controls in static incubations (p〈0.001). In perifusion, glucose-stimulated insulin release was reduced by 90% for first phase (p〈0.01) and by 75% for second phase (p〈0.05). The responses to arginine and 2α Ketoisocaproate in islets were similar to those in controls. In contrast, islets isolated from 8-week-old GK Wistar rats exhibited no significant reduction in glucose-stimulated insulin secretion in static incubations. In perifusion, although both first and second phases of glucose-stimulated insulin release were slightly reduced, these were not significantly different to controls. Islets from 8-week-old GK Wistar rats failed however to respond to stimulation by glyceraldehyde. Raising the medium glucose concentration to 16 mmol/l significantly increased rates of glucose utilisation ([3H] H2O production from 5-[3H] glucose) and oxidation ([14C] CO2 production from U-[14C] glucose) in islets isolated from 8-week-old control and GK Wistar rats, respectively. The rates of oxidation were not significantly different at stimulatory glucose concentrations whereas the rates of utilisation were significantly higher in islets from the diabetic animals (p〈0.05). Production of [3H] H2O from 2-[3H] glycerol metabolism was increased (p〈0.05) at 2 mmol/l glucose but was not significantly different to controls at 16 mmol/l glucose in islets from 8-week-old GK Wistar rats. This data would suggest that abnormalities in islet function are present in 8-week-old diabetic animals although these do not seriously impair glucose-stimulated insulin release from isolated islets. This in turn would indicate that a defect in the glucose signalling pathway in beta cells is not a primary cause of the diabetes of GK Wistar rats and that deterioration of the secretory response is the consequence of some factor associated with the diabetic condition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0428
    Keywords: Key words Fetal islets, insulin release, GLUT-2 transporter, glucose metabolism.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Isolated fetal islets show an immature or poor secretory response to nutrient secretagogues which may result from impaired mitochondrial oxidative processes. Insulin secretion, glucose metabolism and detection of metabolic enzymes by radiolabelling and immunoprecipitation were compared in islets isolated from neonatal (aged 5 days) and fetal rats (at 20 days gestation). The insulin secretory dynamics of fetal islets were abnormal in response to stimulation by glucose (10 mmol/l); a rapid release of insulin reaching a maximum 6 min after stimulation was observed with no rising second phase release. However, when the data were expressed as percentage of islet insulin content released, fetal islets released significantly more insulin than neonatal islets in response to glucose (4.86±0.45 % vs 1.81±0.62 %, p 〈0.01) or 100 nmol/l glibenclamide (2.49±0.17 % vs 0.25±0.06 %, p 〈 0.001). Fetal islets however, failed to release insulin in response to stimulation by glyceraldehyde (10 mmol/l) unlike neonatal islets. Both glucose utilisation (as measured by the formation of [3H] H2O from 5-[3H] glucose) and glucose oxidation (as measured by the formation of [14C] CO2 from U-[14C] glucose) did not increase significantly in response to increasing the medium glucose concentration to 10 mmol/l whereas in neonatal islets, glucose utilisation and glucose oxidation were significantly increased 2.5- and 2.7-fold, respectively. When islets were incubated with both radiolabelled glucoses simultaneously, the rate of glucose oxidation was shown to be directly proportional to the rate of glucose utilisation. The relationship between glucose utilisation and glucose oxidation was similar in fetal and neonatal islets. Finally, in experiments to detect and semiquantify metabolic enzymes, the level of GLUT-2 transporter protein was significantly reduced by 50 % (p 〈0.02) whereas the levels of pyruvate dehydrogenase peptides were similar in fetal and neonatal islets. In conclusion, these data do not support the hypothesis that abnormal mitochondrial oxidation is responsible for the immature secretory responses to nutrient secretagogues found in fetal islets but rather that step(s) earlier in the glycolytic pathway are important for development of normal secretory function. [Diabetologia (1994) 37: 134–140]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    BJOG 98 (1991), S. 0 
    ISSN: 1471-0528
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Summary. This paper forms part of an ongoing prospective study of pregnancy and labour in women with spinal cord injuries and combines a prospective and retrospective analysis of 17 pregnancies in 15 women with spinal injuries. The management and outcome in those 17 pregnancies is reviewed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Acta diabetologica 33 (1996), S. 211-215 
    ISSN: 1432-5233
    Keywords: Key words High sucrose diet ; Glucose tolerance ; Islet function ; Insulin release
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We fed normal rats a high sucrose diet in order to test the hypothesis that mild hyperglycemia can induce defects in pancreatic beta-cell function and impair glucose-stimulated insulin release. Rats provided with free access to a sucrose solution (35%) voluntarily consumed 50% more carbohydrate than control per day. After 7 days of sucrose feeding, glucose tolerance was significantly impaired; the area under the glucose tolerance test curve (GTT) was 683±61 mmol/120 min compared with 472±56 mmol/120 min in controls (P〈0.05). Impaired glucose tolerance was still present after a further 12 days (area under the GTT: 749±99 mmol/120 min). Sucrose-fed rats were significantly (P〈0.05) hyperglycemic by 1.5 mmol/l over controls. When insulin secretion was assessed in vivo and in vitro in control and sucrose-fed rats, no significant differences were apparent in plasma samples collected over a 1-h period or in statically incubated or perifused isolated pancreatic islets. In addition, the rates of glucose utilisation and oxidation were normal in islets from sucrose-fed rats. These data do not support the hypothesis that minimal hyperglycemia is sufficient to impair glucose-stimulated insulin release.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Acta diabetologica 33 (1996), S. 211-215 
    ISSN: 1432-5233
    Keywords: High sucrose diet ; Glucose tolerance ; Islet function ; Insulin release
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We fed normal rats a high sucrose diet in order to test the hypothesis that mild hyperglycemia can induce defects in pancreatic beta-cell function and impair glucosestimulated insulin release. Rats provided with free access to a sucrose solution (35%) voluntarily consumed 50% more carbohydrate than control per day. After 7 days of sucrose feeding, glucose tolerance was significantly impaired; the area under the glucose tolerance test curve (GTT) was 683±61 mmol/120 min compared with 472±56 mmol/120 min in controls (P〈0.05). Impaired glucose tolerance was still present after a further 12 days (area under the GTT: 749±99 mmol/120 min). Sucrosefed rats were significantly (P〈0.05) hyperglycemic by 1.5 mmol/l over controls. When insulin secretion was assessed in vivo and in vitro in control and sucrose-fed rats, no significant differences were apparent in plasma samples collected over a 1-h period or in statically incubated or perifused isolated pancreatic islets. In addition, the rates of glucose utilisation and oxidation were normal in islets from sucrose-fed rats. These data do not support the hypothesis that minimal hyperglycemia is sufficient to impair glucose-stimulated insulin release.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...