Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0738
    Keywords: Key words: 3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone  –  Chlorination  –  Drinking water  –  Toxicity  –  Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. Toxic effects and excretion in urine of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), the potent mutagenic compound in chlorinated drinking water, was evaluated in male Wistar rats by the up-and-down method. MX was dosed by gavage in deionized water at doses between 200 mg/kg and 600 mg/kg, for one animal at a time, and effects were observed for 14 days. Urine was collected in metabolism cages up to 72 h after dosing for chemical analysis of MX in urine. The animals receiving 200 mg/kg did not display clear clinical signs but at higher doses the signs of ill effects included dyspnea, laborious, wheezing and gasping breathing, decreased spontaneous motor activity, ataxia, nostril discharges, catalepsia and cyanosis. In necropsy bronchi contained foamy liquid and the lungs appeared edematous and spongy. The stomach cavity was expanded due to accumulation of fluid and gas and the gastrointestinal tract from stomach to caecum was reddish. Microscopically, the main target organ of toxicity was the gastrointestinal tract (diffuse congestion and necrosis in the mucosa). Signs of toxicity were recorded also in lungs (slight edema) and kidneys (dilated tubules, thin tubular epithelium, brownish tubular and interstitial concretion). The LD50 in 48 h was 230 mg/kg. Only 0.03 – 0.07% of the dose (200 mg/kg or 300 mg/kg) was excreted in urine as intact MX. The results indicate that at high doses MX has a strong local irritating effect in the gastrointestinal tract and it probably increases liquid permeability in lungs. MX may also cause tubular damage in kidneys. Data also indicate that after an oral dose only traces of MX are excreted in urine as intact compound, suggesting that MX is subjected to intense metabolism before excretion, even at lethal doses.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 14 (1993), S. 205-213 
    ISSN: 0197-8462
    Keywords: electromagnetic fields ; embryogenesis ; teratology ; ELF ; VLF ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: We studied effects of alternating magnetic fields on the embryonic and fetal development of rats. Mated females of the Han:Wistar-strain were sham exposed or exposed continuously to a 50-Hz field or to a 20,000 pulse-per-second (pps) sawtooth magnetic field from day 0 to day 20 of pregnancy for 24 h/day until necropsied on day 20. The respective peak-to-peak intensities of the fields were 35.6 μT (sinewave) and 15.0 μT (sawtooth). Each treatment group contained 72 bred females. Control animals were kept under the same conditions without the magnetic field. No adverse effects were seen in the dams. The mean numbers of implantations and living fetuses per litter were statistically significantly increased in the 50-Hz group. There were, however, three total resorptions of litters in dams of the control group, which contributed to the difference in the number of living fetuses. The corrected body-mass gains (gains without uterine content) of dams were similar in all groups. Pregnancy rates, incidences of resorptions. late fetal deaths, and fetal body masses were similar in all groups. The incidence of fetuses with minor skeletal anomalies was statistically significantly increased in both exposed groups. Only one serious malformation (anophthalmia, sawtooth-exposed group) and a few minor visceral malformations were found. In conclusion, the magnetic fields used in this study did not increase the incidence of major malformations or resorptions in Wistar rats. The increased number of skeletal anomalies and implantations we observed indicates, however, that some developmental effects in rats may attend exposure to time-varying magnetic fields. © 1993 Wiley-Liss. Inc.
    Additional Material: 4 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 18 (1997), S. 410-417 
    ISSN: 0197-8462
    Keywords: reproduction ; ELF ; VLF ; magnetic fields ; replication studies ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: This paper has two aims. First, it reports the findings of a study on the effects of low-frequency magnetic fields on reproduction. Second, it serves as an example of an attempt to replicate the results of an experimental study in an independent laboratory and discusses some of the problems of replication studies. To try to replicate the findings of a study reporting increased resorptions (fetal loss) in mice exposed to 20 kHz magnetic fields with sawtooth waveform and to study the possible effects of 50 Hz sinusoidal fields, pregnant mice were exposed to magnetic fields from day 0 to 18 of pregnancy, 24 h per day. The flux densities of the vertical magnetic fields were 15 μT (peak-to-peak) at 20 kHz and 13 or 130 μT (root mean square) at 50 Hz. Two strains of animals were used: CBA/S mice imported from the laboratory reporting the original observations, and a closely related strain CBA/Ca. The CBA/S mice were cleaned of pathogenic microbes and parasites before they were imported into our laboratory. The magnetic field exposures did not affect resorption rate in CBA/Ca mice. In CBA/S, the frequency of resorptions was higher in the exposed mice than in the control group. However, the increase was not significantly different from either the no-effect hypothesis or the results of the original study we were attempting to replicate. Differences between the two studies and difficulties in interpreting the results are discussed. It is concluded that the results tend more to support than argue against increased resorptions in CBA/S mice exposed to the 20 kHz magnetic field. The results demonstrate that animal strain is an important variable in bioelectromagnetics research: even closely related strains may show different responses to magnetic field exposure. Bioelectromagnetics 18:410-417, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 19 (1998), S. 477-485 
    ISSN: 0197-8462
    Keywords: electromagnetic fields ; embryogenesis ; teratology ; low frequency magnetic fields ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Effects of alternating magnetic fields (MFs) on the embryonic and fetal development in CBA/Ca mice were studied. Mated females were exposed continuously to a sinusoidal 50 Hz (13 μT or 0.13 mT root mean square) or a sawtooth 20 kHz (15 μT peak-to-peak) MF from day 0 to day 18 of pregnancy for 24 h/day until necropsied on day 18. Control animals were kept under the same conditions without the MF. MFs did not cause maternal toxicity. No adverse effects were seen in maternal hematology and the frequency of micronuclei in maternal bone marrow erythrocytes did not change. The MFs did not increase the number of resorptions or fetuses with major or minor malformations in any exposure group. The mean number of implantations and living fetuses per litter were similar in all groups. The corrected weight gain (weight gain without uterine content) of dams, pregnancy rates, incidences of resorptions and late fetal deaths, and fetal body weights were similar in all groups. There was, however, a statistically significant increase in the incidence of fetuses with at least three skeletal variations in all groups exposed to MFs. In conclusion, the 50 Hz or 20 kHz MFs did not increase incidences of malformations or resorptions in CBA/Ca mice, but increased skeletal variations consistently in all exposure groups. Bioelectromagnetics 19:477-485, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...