Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1459
    Keywords: Key words Corpus callosum ; Corticospinal tract ; Phenylketonuria ; Focal transcranial magnetic brain ; stimulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The transcranial activation and the conduction properties of corticospinal and callosal neurons were investigated in 12 early-treated adolescents (aged 17.3, SD 3.5 years; range 14–27 years) with phenylketonuria (PKU) by focal transcranial magnetic stimulation (fTMS) of the motor cortex. The patients had no functionally relevant motor disturbances in daily life or on clinical testing. Corticospinally mediated excitatory (response thresholds, amplitudes, central motor latencies) and inhibitory [duration of postexcitatory inhibition (PI)] effects of fTMS were investigated in contralateral hand muscles. Transcallosal inhibition (TI) (onset latency, duration, transcallosal latency) of tonic electromyographic (EMG) activity was tested in ipsilateral muscles. Peripheral motor latencies were determined for responses elicited by magnetic stimulation over cervical nerve roots. Ten normal subjects served as controls. Since in all PKU patients, central and peripheral motor latencies were normal, no neurophysiological indication of a demyelination of corticospinal or peripheral motor fibres was found. However, cortical thresholds of corticospinally mediated responses were increased (52.1, SD 11.6% versus 35.0, SD 7.4% of maximum stimulator output; P 〈 0.05; n = 24 hands) and their amplitudes reduced (2.9, SD 1.4 mV versus 6.1, SD 1.5 mV, P 〈 0.05). The duration of PI was shortened (132, SD 53 ms versus 178, SD 57 ms; P 〈 0.05). TI was absent in 37.5% of the investigated hands or tended to be weak. When TI was present, its onset latencies (38.0, SD 3.6 ms versus 34.7, SD 3.3 ms) and transcallosal latencies were prolonged (18.5, SD 3.8 ms versus 14.8, SD 3.2 ms), while its duration was normal. These abnormal excitatory and inhibitory effects of fTMS suggest a reduced susceptibility of cortical excitatory and inhibitory neuronal structures compatible with a loss of neurons or a rarefication of their dendrites.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...