Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 570 (1989), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 498 (1987), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 393 (1982), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-4919
    Keywords: diabetes ; lipid peroxidation ; free radicals ; human proximal tubule cells ; cell growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract This study has examined whether elevated glucose can induce lipid peroxidation and contribute to the inhibition of cell growth in human kidney proximal tubule(HPT) cells. HPT cells were cultured in media containing glucose concentrations of 8 mM (control), 25 mM, and 50 mM. Lipid peroxidation was assessed by the thiobarbituric acid reactivity and cell growth was assessed by 3H-thymidine uptake. Results show decreased (59%, p 〈 0.01) growth of HPT cells cultured in 50 mM glucose. Cells cultured in 50 mM mannitol did not show any growth inhibition, suggesting that the decreased cell growth associated with glucose is not due to osmolarity changes. There was an increase (108%, p 〈 0.02) in lipid peroxidation in cells cultured with high levels of glucose (50 mM) compared with controls and cells cultured with 50 mM mannitol. To examine if membrane lipid peroxidation or malondialdehyde (MDA, an end product of lipid peroxidation) has any role in the inhibition of cell growth, we examined the effect of tertiary butylhydroperoxide (TBH, known to cause lipid peroxidation and generate MDA) on the growth of HPT cells. TBH decreased cell growth (49, 17 and 3% of controls at 0.1, 0.25, and 0.5 [mole TBH/ml medium). Similarly, a marked reduction in the growth was observed with exogenous MDA (72, 69 and 34% of controls at 0.1, 0.25, and 0.5 μmole MDA/ml medium). This suggests that elevated glucose can induce membrane lipid peroxidation and accumulation of MDA, which in turn can inhibit cellular growth and contribute to the altered structure and function of HPT cells in diabetes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 151 (1995), S. 33-38 
    ISSN: 1573-4919
    Keywords: preeclampsia ; vitamin E ; lipid peroxidation ; hypertension
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Preeclampsia or pregnancy-induced hypertension is a major cause of both maternal and fetal-neonatal morbidity and mortality. The deficiency of vitamin E can cause accumulation of lipid peroxidation products, which, in turn, can induce vasoconstriction. This study has examined any evidence of increased cellular lipid peroxidation and accumulation of malonydialdehyde (MDA, an end product of lipid peroxidation) in pregnancy-induced hypertension and any relationship between the elevated MDA and lower vitamin E levels with hypertension in pregnant women. EDTA-Blood was collected from pregnant women at the time of delivery. Plasma vitamin E was determined by HPLC; MDA by the thiobarbituric acid-reactivity. Subjects with diastolic blood pressure(DBP) ≥90 mm Hg were considered hypertensive (HT) and with 〈90 mm Hg normotensive (NT). Data (Mean±SE) from 49 NT and 11 HT women show that HT has significantly lower vitamin E (22±1 vs 27±1 nmole/ml, p〈0.03) and elevated MDA levels (0.56±0.06 vs 0.43±0.02 nmole/ml, p〈0.03) compared to NT; the ages and gestational ages of women were similar. Among all women, there was a significant positive relationship between DBP and MDA levels (r=0.27, p〈0.05), and a significant negative relationship between vitamin E levels and DBP (−0.36, p〈0.005), and a significant negative relationship between MDA and vitamin E levels (r=−0.27, p〈0.05). Thus, HT women's plasma has significantly lower E and higher MDA levels, and DBP significantly correlates with the extent of vitamin E deficiency and increased MDA levels. This study suggests a relationship between elevated lipid peroxidation and lower vitamin E levels and hypertension in pregnancy (preeclampsia).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-4919
    Keywords: endosulfan ; cytotoxicity ; mitochondria ; apoptosis ; Jurkat cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Several organochlorinated pesticides including DDT, PCBs and dieldrin have been reported to cause immune suppression and increase susceptibility to infection in animals. Often this manifestation is accompanied by atrophy of major lymphoid organs. It has been suggested that increased apoptotic cell death leading to altered T-B cell ratios, and loss of regulatory cells in critical numbers leads to perturbations in immune function. The major objective of our study was to define the mechanism by which endosulfan, an organochlorinated pesticide, induces human T-cell death using Jurkat, a human T-cell leukemic cell line, as an in vitro model. We exposed Jurkat cells to varying concentrations of endosulfan for 0-48 h and analyzed biochemical and molecular features characteristic of T-cell apoptosis. Endosulfan lowered cell viability and inhibited cell growth in a dose- and time-dependent manner. DAPI staining was used to enumerate apoptotic cells and we observed that endosulfan at 10-200 μM induced a significant percentage of cells to undergo apoptotic cell death. At 48 h, more than 90% cells were apoptotic with 50 μM of endosulfan. We confirmed these observations using both DNA fragmentation and annexin-V binding assays. It is now widely being accepted that mitochondria undergo major changes early during the apoptotic process. We examined mitochondrial transmembrane potential (ΔΨm) in endosulfan treated cells to understand the role of the mitochondria in T-cell apoptosis. Within 30 min of chemical exposure, a significant percentage of cells exhibited a decreased incorporation of DiOC6(3), a cationic lipophilic dye into mitochondria indicating the disruption of ΔΨm. This drop in ΔΨm was both dose- and time-dependent and correlated well with other parameters of apoptosis. We also examined whether this occurred by the down regulation of bcl-2 protein expression that is likely to increase the susceptibility of Jurkat cells to endosulfan toxicity. Paradoxically, the intracellular expression of bcl-2 protein was elevated in a dose dependent manner suggesting endosulfan-induced apoptosis occurred by a non-bcl-2 pathway. Based on these data, as well as those reported elsewhere, we propose the following sequence of events to account for T-cell apoptosis induced by endosulfan: uncoupling of oxidative phosphorylation → excess ROS production → GSH depletion → oxidative stress → disruption of ΔΨm → release of cytochrome C and other apoptosis related proteins to cytosol → apoptosis. This study reports for the first time that endosulfan can induce apoptosis in a human T-cell leukemic cell line which may have direct relevance to loss of T cells and thymocytes in vivo. Furthermore, our data strongly support a role of mitochondrial dysfunction and oxidative stress in endosulfan toxicity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...