Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0886
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Cre recombinase was used to mediate recombination between a chromosomally introduced loxP sequence in Arabidopsis thaliana (35S-lox-cre) and transferred DNA (T-DNA) originating from Agrobacterium tumefaciens (plox-npt), carrying a single loxP sequence. Constructs were designed for specific Cre-mediated recombination between the two lox sites, resulting in restoration of neomycin phosphotransferase (nptII) expression at the target locus. Kanamycin resistant (Kmr) recombinants were obtained with an efficiency of about 1% compared with random integration. Molecular analyses confirmed that these were indeed due to recombination between the lox sites of the target and introduced T-DNA. However, polymerase chain reaction analysis revealed that these reflected site-specific integration events only in a minority (4%). The other events were classified as translocations/inversions (71%) or deletions (25%), and were probably caused by site-specific recombination between a randomly integrated T-DNA and the original target locus. We studied some of these events in detail, including a Cre-mediated balanced translocation event, which was characterized by a combination of molecular, genetic and cytogenetic experiments (fluorescence in situ hybridization to spread pollen mother cells at meiotic prophase I). Our data clearly demonstrate that Agrobacterium-mediated transfer of a targeting T-DNA with a single lox site allows the isolation of multiple chromosomal rearrangements, including translocation and deletion events. Given that the complete sequence of the Arabidopsis genome will have been determined shortly this method has significant potential for applications in functional genomics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Eukaryotic cells use multiple, highly conserved mechanisms to contend with ultraviolet-light-induced DNA damage. One important response mechanism is transcription-coupled repair (TCR), during which DNA lesions in the transcribed strand of an active gene are repaired much faster than in the ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...