Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0533
    Keywords: Traumatic brain injury ; Hypothermia ; Blood-brain barrier ; Hypertension ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of moderate hypothermia on blood-brain barrier (BBB) permeability and the acute hypertensive response after moderate traumatic brain injury (TBI) in rats were examined. TBI produced increased vascular permeability to endogenous serum albumin (IgG) in normothermic rats (37.5°C) throughout the dorsal cortical gray and white matter as well as in the underlying hippocampi as visualized by immunocytochemical techniques. Vascular permeability was greatly reduced in hypothermic rats cooled to 30°C (brain temperature) prior to injury. In hypothermic rats, albumin immunoreactivity was confined to the gray-white interface between cortex and hippocampi with no involvement of the overlying cortices and greatly reduced involvement of the underlying hippocampi. The acute hypertensive response in normothermic rats peaked at 10 s after TBI (187.3 mm Hg) and returned to baseline within 50 s. In contrast, the peak acute hypertensive response was significantly (P〈0.05) reduced in hypothermic rats (154.8 mm Hg, 10 s after TBI) and returned to baseline at 30 s after injury. These results demonstrate that moderate hypothermia greatly reduces endogenous vascular protein-tracer passage into and perhaps through the brain. This reduction may, in part, be related to hypothermia-induced modulation of the systemic blood pressure response to TBI.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 273-281 
    ISSN: 1432-0789
    Keywords: Key words Wheat ; (Triticum aestivum) ; Rhizosphere ; Soil microflora ; Gram-negative bacteria ; API 20NE ; Flavobacterium spp. ; Cytophaga
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We identified 161 Gram-negative bacterial strains isolated from the root surface of wheat grown under different soil conditions. The strains were divided into seven groups based on major morphological and physiological properties. Taxonomic allocation of the groups was verified by guanine+cytosine contents of DNA. Except for one group, which may be assumed to include bacteria belonging to the genera Flavobacterium and Cytophaga, the various groups were taxonomically united. The distribution of the groups changed with soil improvement. Pseudomonads predominated in unimproved soil, but Flavobacterium and Cytophaga spp. were predominant in the most improved soil. As all the strains were non-fermentative by Hugh and Leifson‘s test, API 20NE identification was applied. However, many strains were misidentified by this system, especially in the Flavobacterium and Cytophaga spp. group. For ecological studies, the strains were classified to species level by the API 20 NE system and by the results of a combination of guanine+cytosine (mol%) and isoprenoid quinone data. The pattern of distribution of the bacteria on the root surface of wheat varied at species level within one genus depending on soil conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...