Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 67 (1990), S. 5433-5435 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have studied the magnetic structure of the nuclear spin system in Cu below 60 nK by means of neutron scattering. The observation of the nuclear (100) superlattice reflection proves the theoretically predicted antiferromagnetic arrangement of the nuclear spins. The critical field at the lowest temperatures was 0.24 mT. Around 0.1 mT the (100) reflection could not be observed. This is taken as an indication for, possibly, a reorientation phase transitition at this field. Therefore, the phase diagram contains at least two phases. For 0.1 mT〈B〈0.24 mT strong time dependencies of the ordering were observed. At low fields (B〈0.1 mT) nucleation times of the order of 10 s have been observed. These results are discussed with respect to the cooling technique: Adiabatic demagnetization requires constant entropy, a rather unusual way to bring a system from the paramagnetic to the ordered phase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-7357
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Nuclear magnetism in metallic copper has been studied by demagnetizing highly polarized spins to low fields where spin-spin interactions dominate. In earlier experiments anomalous spin-lattice relaxation caused by impurities warmed up nuclear spins too fast; this adverse effect was overcome by selective oxidation of impurities. In zero field the critical temperatureT c of the antiferromagnetic transition is 58±10 nK, and during the first-order phase change the entropy increases from (0.48±0.03)ℛ ln 4 to (0.61±0.03)ℛ ln 4. The critical fieldB c =0.27±0.01 mT. The entropy and the static susceptibility of the nuclear spins were measured as a function of temperature whenB=0. These curves agree with theory in the paramagnetic state. In a polycrystalline sample two anomalies were observed at the lowest entropies in the NMR line shapes of the dynamic susceptibility and in the behavior of the static susceptibility. However, when measuring the static susceptibility of a single-crystal specimen in the three Cartesian directions, three different ordered phases were found. These antiferromagnetic states are described and theB-S phase diagram is presented. Metastability and nonadiabaticity are discussed. The observed large reduction ofT c from the mean field calculationT MF=230 nK is caused by fluctuations. The free electron model of the Ruderman-Kittel (RK) interaction seems to be able to explain only one ordered phase. However, relatively small changes to the RK range function or inclusion of non-s-electron-mediated interactions to the Hamiltonian may increase the number of ordered phases to three. Long-living metastable states are another possible explanation for the observations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1434-6036
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We have utilized the polarized neutron scattering technique for the determination of the nuclear temperature in copper from 20 mK down to 100 μK. Using a cooling facility where two adiabatic demagnetization stages work in series we have calibrated the flipping ratio of neutrons scattered from the (200) Bragg-peak against the nuclear polarization over the whole polarization range. The observed calibration curve deviates considerably from the curve expected for an extinction-free sample. The polarized neutron thermometer is discussed and applied in measurements of the spin-lattice relaxation in copper.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of low temperature physics 74 (1989), S. 435-473 
    ISSN: 1573-7357
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We have constructed a two-stage nuclear demagnetization cryostat for neutron diffraction studies of nuclear magnetism in copper. The cryostat is combined with a two-axis neutron spectrometer which can use both polarized and unpolarized neutrons. By demagnetizing highly polarized copper nuclear spins, the nuclei could be cooled below the ordering temperatureT N≃60 nK, while keeping the lattice at a considerably higher temperature between 50 and 100 µK. The neutron beam increases the lattice temperature in the sample by a factor of two or more, thereby considerably shortening the time for measurements in the ordered state; both our calculations and the experiments yield 1 nW beam heating. Polarized neutron experiments show that the scattered intensities from the strong fcc reflections are severely reduced by extinction. This makes the sample not very suitable for further studies with polarized neutrons. By observing the (100) Bragg reflection, we have unambiguously proven antiferromagnetic ordering of the copper nuclear spins. Using a linear, position-sensitive detector, the time evolution of this peak was followed during the warm-up of the nuclear spin system. The peak intensity was found to depend strongly on the external magnetic field between zero and the critical fieldB c=0.25 mT, indicating the existence of at least two antiferromagnetic phases. The results are compared to previous measurements of the magnetic susceptibility. Theoretical calculations do not provide a full explanation for our experimental data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...