Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 1359-1365 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: An algorithm is presented for solving coupled-cluster (CC) equations by successive diagonalization of 2×2 matrices. It is more expensive than usual procedures, but it is capable of solving a CC problem where any arbitrary excitation is included in the cluster operator. Equation-of-motion coupled-cluster (EOMCC) excitation energies can also be determined by this method regardless of the type of excitations in the cluster operator and the space where the effective Hamiltonian is diagonalized. The algorithm is applied to the study of the convergence of CC and EOMCC series in some small bases. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 117 (2002), S. 980-990 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A state-selective multireference coupled-cluster algorithm is presented which is capable of describing single, double (or higher) excitations from an arbitrary complete model space. One of the active space determinants is chosen as a formal Fermi-vacuum and single, double (or higher) excitations from the other reference functions are considered as higher excitations from this determinant as it has been previously proposed by Oliphant and Adamowicz [J. Chem. Phys. 94, 1229 (1991)]. Coupled-cluster equations are generated in terms of antisymmetrized diagrams and restrictions are imposed on these diagrams to eliminate those cluster amplitudes which carry undesirable number of inactive indices. The corresponding algebraic expressions are factorized and contractions between cluster amplitudes and intermediates are evaluated by our recent string-based algorithm [J. Chem. Phys. 115, 2945 (2001)]. The method can be easily modified to solve multireference configuration interaction problems. Performance of the method is demonstrated by several test calculations on systems which require a multireference description. The problem related to the choice of the Fermi-vacuum has also been investigated. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 115 (2001), S. 2945-2954 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The viability of treating higher excitations in coupled-cluster theory is discussed. An algorithm is presented for solving coupled-cluster (CC) equations which can handle any excitation. Our method combines the formalism of diagrammatic many-body perturbation theory and string-based configuration interaction (CI). CC equations are explicitly put down in terms of antisymmetrized diagrams and a general method is proposed for the factorization of the corresponding algebraic expressions. Contractions between cluster amplitudes and intermediates are evaluated by a string-based algorithm. In contrast to our previous developments [J. Chem. Phys. 113, 1359 (2000)] the operation count of this new method scales roughly as the (2n+2)nd power of the basis set size where n is the highest excitation in the cluster operator. As a by-product we get a completely new CI formalism which is effective for solving both truncated and full CI problems. Generalization for approximate CC models as well as multireference cases is also discussed. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 70 (1998), S. 571-581 
    ISSN: 0020-7608
    Keywords: partitioning ; level shift ; quasi-degenerate PT ; Dyson equation ; geminals ; excited states ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: For the treatment of electron correlation, one most often uses the Møller-Plesset (MP) partition which defines the zero-order Hamiltonian through the spectral resolution of the Fockian. We investigate how the MP partitioning can be improved while still using the Hartree-Fock (HF) reference state; and how the HF wave function can be substituted by a correlated one preserving the formal simplicity of the HF-based approach. To improve the MPn result, we introduce a fine tuning of energy denominators replacing the HF orbital energies with the ionization potentials obtained from the second-order Dyson equation. As this equation usually tends to close the gaps, a slight decrease of the denominators is expected, inducing an improvement of low-order correlation energies. We keep the simplicity of the MP partitioning and handle Dyson corrections as simple level shifts. Substituting doubly filled HF orbitals by strongly orthogonal geminals, one introduces a correlated reference state which is variational, size-consistent, and properly describes single-bond dissociation. This wave function, the antisymmetrized product of strongly orthogonal geminals (APSG), offers a good starting point for further corrections. We show that the use of an APSG reference state in the equation-of-motion technique leads to Tamm-Dankoff approach (TDA) equations which account for correlation effects in electronic excitation energies.   © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 571-581, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...