Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1203
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract About 70% of patients with Prader-Willi syndrome (PWS) and Angelman syndrome (AS) have a common interstitial de novo microdeletion encompassing paternal (PWS) or maternal (AS) loci D15S9 to D15S12. Most of the non-deletion PWS patients and a small number of non-deletion AS patients have a maternal or paternal uniparental disomy (UPD)15, respectively. Other chromosome 15 rearrangements and a few smaller atypical deletions, some of the latter being associated with an abnormal methylation pattern, are rarely found. Molecular and fluorescence in situ hybridization (FISH) analysis have both been used to diagnose PWS and AS. Here, we have evaluated, in a typical routine cytogenetic laboratory setting, the efficiency of a diagnostic strategy that starts with a FISH deletion assay using Alu-PCR (polymerase chain reaction)-amplified 1315S10-positive yeast artificial chromosome (YAC) 273A2. We performed FISH in 77 patients suspected of having PWS (n = 66) or AS (n = 11) and compared the results with those from classical cytogenetics and wherever possible with those from DNA analysis. A FISH deletion was found in 16/66 patients from the PWS group and in 3/11 patients from the AS group. One example of a centromere 15 co-hybridization performed in order to exclude cryptic translocations or inversions is given. Of the PWS patients, 14 fulfilled Holm's criteria, but two did not. DNA analysis confirmed the commmon deletion in all patients screened by the D15S63 methylation test and in restriction fragment length polymorphism dosage blots. In 3/58 non-deletion patients, other chromosomal aberrations were found. Of the non-deleted group, 27 subjects (24 PWS, 3 AS) were tested molecularly, and three patients with an uniparental methylation pattern were found in the PWS group. The other 24/27 subjects had neither a FISH deletion nor uniparental methylation, but two had other cytogenetic aberrations. Given that cytogenetic analysis is indispensable in most patients, we find that the FISH deletion assay with YAC 273A2 is an efficient first step for stepwise diagnostic testing and mutation-type analysis of patients suspected of having PWS or AS.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1203
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Lipoprotein(a) [Lp(a)] is a quantitative trait in human plasma. Lp(a) consists of a low-density lipoprotein and the plasminogen-related apolipoprotein(a) [apo(a)]. The apo(a) gene determines a size polymorphism of the protein, which is related to Lp(a) levels in plasma. In an attempt to gain a deeper insight into the genetic architecture of this risk factor for coronary heart disease, we have investigated the basis of the apo(a) size polymorphism by pulsed field gel electrophoresis of genomic DNA employing various restriction enzymes (SwaI, KpnI, KspI, SfiI, NotI) and an apo(a) kringle-IV-specific probe. All enzymes detected the same size polymorphism in the kringle IV repeat domain of apo(a). With KpnI, 26 different alleles were identified among 156 unrelated subjects; these alleles ranged in size from 32kb to 189kb and differed by increments of 5.6kb, corresponding to one kringle IV unit. There was a perfect match between the size of the apo(a) DNA phenotypes and the size of apo(a) isoforms in plasma. The apo(a) DNA polymorphism was further used to estimate the magnitude of the apo(a) gene effect on Lp(a) levels by a sib-pair comparison approach based on 253 sib-pairs from 64 families. Intra-class correlation of log-transformed Lp(a) levels was high in sib-pairs sharing both parental alleles (r = 0.91), significant in those with one common allele (r = 0.31), and absent in those with no parental allele in common (r = 0.12). The data show that the intra-individual variability in Lp(a) levels is almost entirely explained by variation at the apo(a) locus but that only a fraction (46%) is explained by the DNA size polymorphism. This suggests further heterogeneity relating to Lp(a) levels in the apo(a) gene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 748 (1994), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 259 (1998), S. 398-403 
    ISSN: 1617-4623
    Keywords: Key words Protein kinase C (PKC) ; Theta isoenzyme ; Chromosome 10p15 ; T-cell expressed ; Genomic organization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Members of the protein kinase C (PKC) family of serine/threonine kinases, in particular PKCθ, play critical roles in the regulation of differentiation and proliferation of T lymphocytes. In this study the genomic structure of the human PRKCQ gene that encodes PKCθ was determined. Two genomic P1 clones were isolated from human P1 libraries using the PKCθ cDNA as a probe and have been used to confirm the assignment of the single PRKCQ locus to chromosome 10p15 by FISH analysis. The PRKCQ locus, the first mammalian PKC gene locus characterized so far, spans approximately 62 kb and is composed of 15 coding exons and 14 introns, varying in size between 98 and 16 000 bp. All exon-intron boundaries have been determined by long-range PCR and subsequent DNA sequence analysis. Comparison with other known genomic PKC genes reveals a high degree of homology to the genomic organization of the Drosophila melanogaster dPRKC gene. Alignment of the intron positions in the PRKCQ gene with the intron locations in the dPRKC gene indicates that the sites of seven of the 14 PRKCQ introns are exactly conserved. Exons 5 (32 bp), 11 (174 bp) and 12 (92 bp) share highest similarity in size, organization and primary structure with their counterparts in the Drosophila gene. On the basis of this knowledge of the genomic PRKCQ locus, a directed search for potential genetic polymorphisms and/or genetic abnormalities involved in human genetic disease(s) can now be initiated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...