Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Endoplasmic reticulum (ER) stress is believed to play an important role in neurodegenerative disorders such as Alzheimer's disease. In the present study, we investigated the effect of the human amyloid precursor protein (APP) on the ER stress response in PC12 cells. Tunicamycin, an inhibitor of N-glycosylation, rapidly induced the expression of the ER-resident chaperone Bip/grp78, a known target gene of the unfolded protein response. Prolonged treatment with tunicamycin (≥ 12 h) resulted in the activation of executioner caspases 3 and 7. Interestingly, PC12 cells overexpressing human wild-type APP (APPwt) showed increased resistance to tunicamycin-induced apoptosis compared with empty vector-transfected controls. This neuroprotective effect was significantly diminished in cells expressing the Swedish mutation of APP (KM670/671NL). Similar effects were observed when ER stress was induced with brefeldin A, an inhibitor of ER-to-Golgi protein translocation. Of note, APP-mediated neuroprotection was not associated with altered expression of Bip/grp78 or transcription factor C/EBP homologous protein-10 (CHOP/GADD153), suggesting that APP acted either downstream or independently of ER-to-nucleus signaling. Our data indicate that APP plays an important physiological role in protecting neurons from the consequences of prolonged ER stress, and that APP mutations associated with familial Alzheimer's disease may impair this protective activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Ceramides are potent lipid second messengers that are involved in apoptotic and hypoxic/ischaemic neurone death. We investigated the role of mitochondria and the mitochondrial apoptosis pathway in ceramide-induced cell death using human D283 medulloblastoma cells with a reduced mitochondrial DNA copy number (ρ– cells) and a corresponding defect in mitochondrial respiration. Treatment with the complex I inhibitor rotenone, C2- or C8-ceramide induced cell death in D283 control cells, while ρ– cells were significantly protected. In contrast, activation of the mitochondrial apoptosis pathway by transient overexpression of the pro-apoptotic Bax protein or exposure to the kinase inhibitor staurosporine induced apoptosis to a similar extent in control and ρ– cells. Overexpression of the antiapoptotic protein Bcl-xL failed to inhibit the toxic effect of C2-ceramide in D283 control cells, and no significant increase in caspase-3-like protease activity could be detected during the death process. Despite this, C2-ceramide induced significant chromatin condensation and cell shrinkage in D283 control cells, reminiscent of apoptosis. These morphological alterations were associated with the activation of calpains. Both apoptotic morphology and calpain activation were attenuated in ρ– cells. Our data indicate that the apoptosis-inducing effect of C2-ceramide may require mitochondrial respiratory chain activity and can occur independently of the mitochondrial apoptosis pathway, but involves the activation of calpains.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: During apoptotic and excitotoxic neuron death, challenged mitochondria release the pro-apoptotic factor cytochrome c. In the cytosol, cytochrome c is capable of binding to the apoptotic protease-activating factor-1 (APAF-1). This complex activates procaspase-9 in the presence of dATP, resulting in caspase-mediated execution of apoptotic neuron death. Many forms of Ca2+-mediated neuron death, however, do not lead to prominent activation of the caspase cascade despite significant release of cytochrome c from mitochondria. We demonstrate that elevation of cytosolic Ca2+ induced prominent degradation of APAF-1 in human SH-SY5Y neuroblastoma cells and in a neuronal cell-free apoptosis system. Loss of APAF-1 correlated with a reduced ability of cytochrome c to activate caspase-3-like proteases. Ca2+ induced the activation of calpains, monitored by the cleavage of full-length α-spectrin into a calpain-specific 150-kDa breakdown product. However, pharmacological inhibition of calpain activity indicated that APAF-1 degradation also occurred via calpain-independent pathways. Our data suggest that Ca2+ inhibits caspase activation during Ca2+-mediated neuron death by triggering the degradation of the cytochrome c-binding protein APAF-1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...