Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-882X
    Keywords: biomass ; carbohydrates ; polysaccharides ; steam explosion ; xylan
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The isolation of non-cellulosic heteropolysaccharides (HetPS) from barley husks (Hordeum spp.) and yellow poplar wood chips (Liriodendron tulipifera) was accomplished using mild steam explosion followed by extraction with water and ultrafiltration. The generally low yields, low purity, and low degree of polymerization (DP) improved when the HetPS were isolated following either alkali extraction of hammermilled or disk-refined biomass, or from holocellulose preparations generated by the conventional chlorite method or by organosolv delignification. Several purification methods were examined including precipitation using methanol; treatment with hydrogen peroxide (H2O2) or activated carbon (C) followed by precipitation with methanol; and H2O2-treatment followed by ultrafiltration. The isolation protocols were judged based on product yield, xylan content, and DP. The results indicate that, although steam explosion is effective in removing HetPS from the fiber source, virtually none remain in polymeric form. By contrast, alkali extraction succeeds in separating polymeric HetPS from the fiber source; and HetPS purity increases and polydispersity decreases with fiber prehydrolysis and delignification. Significant processing difficulties were attributed to the intimate association of HetPS with lignin which was effectively disrupted by acid-catalyzed pretreatment and treatment with H2O2. Ultrafiltration of H2O2-treated HetPS solutions represents the best procedure for isolating a xylan-rich polymer in high yield, with high DP and with high purity. Aqueous HetPS solutions can be spray- or freeze-dried into powderous products.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 419-427 
    ISSN: 0006-3592
    Keywords: corn stover ; Tween ; hydrolysis ; enzyme ; saccharification ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Corn stover is a potential substrate for fermentation processes. Previous work with corn stover demonstrated that lime pretreatment rendered it digestible by cellulase; however, high sugar yields required very high enzyme loadings. Because cellulase is a significant cost in biomass conversion processes, the present study focused on improving the enzyme efficiency using Tween 20 and Tween 80; Tween 20 is slightly more effective than Tween 80. The recommended pretreatment conditions for the biomass remained unchanged regardless of whether Tween was added during the hydrolysis. The recommended Tween loading was 0.15 g Tween/g dry biomass. (The critical relationship was the Tween loading on the biomass, not the Tween concentration in solution.) The 72-h enzymic conversion of pretreated corn stover using 5 FPU cellulase/g dry biomass at 50°C with Tween 20 as part of the medium was 0.85 g/g for cellulose, 0.66 g/g for xylan, and 0.75 for total polysaccharide; addition of Tween improved the cellulose, xylan, and total polysaccharide conversions by 42, 40, and 42%, respectively. Kinetic analyses showed that Tween improved the enzymic absorption constants, which increased the effective hydrolysis rate compared to hydrolysis without Tween. Furthermore, Tween prevented thermal deactivation of the enzymes, which allows for the kinetic advantage of higher temperature hydrolysis. Ultimate digestion studies showed higher conversions for samples containing Tween, indicating a substrate effect. It appears that Tween improves corn stover hydrolysis through three effects: enzyme stabilizer, lignocellulose disrupter, and enzyme effector. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:419-427, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...