Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Since the start of the Large Helical Device (LHD) experiment, various attempts have been made to achieve improved plasma performance in LHD [A. Iiyoshi et al., Nucl. Fusion 39, 1245 (1999)]. Recently, an inward-shifted configuration with a magnetic axis position Rax of 3.6 m has been found to exhibit much better plasma performance than the standard configuration with Rax of 3.75 m. A factor of 1.6 enhancement of energy confinement time was achieved over the International Stellarator Scaling 95. This configuration has been predicted to have unfavorable magnetohydrodynamic (MHD) properties, based on linear theory, even though it has significantly better particle-orbit properties, and hence lower neoclassical transport loss. However, no serious confinement degradation due to the MHD activities was observed, resolving favorably the potential conflict between stability and confinement at least up to the realized volume-averaged beta 〈β〉 of 2.4%. An improved radial profile of electron temperature was also achieved in the configuration with magnetic islands, minimized by an external perturbation coil system for the Local Island Divertor (LID). The LID has been proposed for remarkable improvement of plasma confinement like the high (H) mode in tokamaks, and the LID function was suggested in limiter experiments. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 71 (2000), S. 2360-2366 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Absolute measurements of poloidal rotation velocity with the accuracy up to 1 km/s (2 pm in wavelength) were done using charge exchange spectroscopy in a large helical device. Radial profiles of the absolute Doppler shift of charge exchange emission with a beam are obtained from spectra measured with four sets of optical fiber arrays that view downward and upward at the poloidal cross section with and without neutral beam injection. By arranging the optical fiber from four arrays close to each other at the entrance slit, the apparent Doppler shift due to aberrations of the spectrometer and due to interference of the cold component (the charge exchange between He-like oxygen and thermal neutrals 8 pm from the charge exchange emission with a beam) can be eliminated from the measurements. The measured poloidal rotation velocity is 1–3 km/s in the electron diamagnetic direction at half of the plasma minor radius. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experimental test of the radial force balance equation was done in the Compact Helical System Heliotron/Torsatron [S. Okamura et al. Nucl. Fusion 39, 1337 (1999)]. A radial electric field is measured with a heavy ion beam probe, while plasma rotation and drift velocity of fully ionized carbon are measured with charge exchange spectroscopy. The two measurements agree with each other to within 10% of the radial electric field in a wide range of electron densities of 0.3–2.0×1019 m−3. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In the discharges of the Large Helical Device [O. Motojima et al., Proceedings of the 16th Conference on Fusion Energy, Montreal, 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 3, p. 437], a significant enhancement of the energy confinement has been achieved with an edge thermal transport barrier, which exhibits a sharp gradient at the edge. Key features associated with the barrier are quite different from those seen in tokamaks (i) almost no change in particle (including impurity) transport, (ii) a gradual formation of the barrier, (iii) a very high ratio of the edge temperature to the average temperature, (iv) no edge relaxation phenomenon. In the electron cyclotron heating (ECH) heated discharges in the Compact Helical System [K. Matsuoka et al., in Proceedings of the 12th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Nice, France, 1988 (International Atomic Energy Agency, Vienna, 1989), Vol. 2, p. 411], the internal electron transport barrier has been observed, which enhances the central electron temperature significantly. High shear of the radial electric field appears to suppress the turbulence in the core region and enhance the electron confinement there. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The Large Helical Device (LHD) experiments [O. Motojima, et al., Proceedings, 16th Conference on Fusion Energy, Montreal, 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 3, p. 437] have started this year after a successful eight-year construction and test period of the fully superconducting facility. LHD investigates a variety of physics issues on large scale heliotron plasmas (R=3.9 m, a=0.6 m), which stimulates efforts to explore currentless and disruption-free steady plasmas under an optimized configuration. A magnetic field mapping has demonstrated the nested and healthy structure of magnetic surfaces, which indicates the successful completion of the physical design and the effectiveness of engineering quality control during the fabrication. Heating by 3 MW of neutral beam injection (NBI) has produced plasmas with a fusion triple product of 8×1018 keV m−3 s at a magnetic field of 1.5 T. An electron temperature of 1.5 keV and an ion temperature of 1.4 keV have been achieved. The maximum stored energy has reached 0.22 MJ, which corresponds to 〈β〉=0.7%, with neither unexpected confinement deterioration nor visible magnetohydrodynamics (MHD) instabilities. Energy confinement times, reaching 0.17 s at the maximum, have shown a trend similar to the present scaling law derived from the existing medium sized helical devices, but enhanced by 50%. The knowledge on transport, MHD, divertor, and long pulse operation, etc., are now rapidly increasing, which implies the successful progress of physics experiments on helical currentless-toroidal plasmas. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The bifurcation nature of the electrostatic structure is studied in the toroidal helical plasma of the Compact Helical System (CHS) [K. Matsuoka et al., Proceedings of the 12th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Nice, 1988 (International Atomic Energy Agency, Vienna, 1989), Vol. 2, p. 411]. Observation of bifurcation-related phenomena is introduced, such as characteristic patterns of discrete potential profiles, and various patterns of self-sustained oscillations termed electric pulsation. Some patterns of the electrostatic structure are found to be quite important for fusion application owing to their association with transport barrier formation. It is confirmed, as is shown in several tokamak experiments, that the thermal transport barrier is linked with electrostatic structure through the radial electric field shear that can reduce the fluctuation resulting in anomalous transport. This article describes in detail spatio-temporal evolution during self-sustained oscillation, together with correlation between the radial electric field and other plasma parameters. An experimental survey to find dependence of the temporal and spatial patterns on plasma parameters is performed in order to understand systematically the bifurcation property of the toroidal helical plasma. The experimental results are compared with the neoclassical bifurcation property that is believed to explain the observed bifurcation property of the CHS plasmas. The present results show that the electrostatic property plays an essential role in the structural formation of toroidal helical plasmas, and demonstrate that toroidal plasma is an open system with a strong nonlinearity to provide a new attractive problem to be studied. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We have achieved long-pulse plasma heating using a negative-ion-based neutral beam injector (NBI) in the large helical device (LHD), where the confinement magnetic field is generated by only external superconducting coils. In the initial long-pulse experiments at lower power than that in short-pulse experiments, 80 keV–1.1 MW NBI heating lasted for 10 s with a little increase in the plasma density at the pulse end. Almost steady-state plasma heating was achieved for 21 s with 66 keV–0.6 MW NB injection. Plasma relaxation oscillation phenomena at a period of 1–2 s were also observed for 20 s. Above 1 keV plasma was easily sustained with a long-pulse NBI heating in LHD, without the current drive nor the disruption in tokamaks. Negative ion source operation was stable and the cooling water temperature rise of beam accelerator grids was nearly saturated with a temperature rise below 10 °C. For a higher power injection, the pulse duration is determined by the beam blocking, where the reionization loss is exponentially increased together with an increase in outgas in the injection port. The port conditioning by a careful repetition of injection is effective to the extension of the injection duration and the plasma maintenance duration. The initial long-pulse NBI heating at the reduced power has demonstrated an ability of steady-state operation in superconducting LHD. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-5233
    Keywords: Key words Interleukin-6 ; Interleukin-6 receptor ; Fibrinogen ; Diabetes mellitus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We evaluated the relationship between plasma fibrinogen concentration and the serum levels of interleukin-6 (IL-6), its soluble receptor, and their complex in patients with type 2 diabetes mellitus. The study comprised 57 patients with type 2 diabetes and 15 normal healthy controls. Serum levels of IL-6, soluble IL-6 receptor (IL-6R), and circulating IL-6/IL-6R complex were determined by enzyme-linked immunosorbent assays. Correlations between the different study parameters and serum IL-6, IL-6R, or IL-6/IL-6R complex levels were determined by multiple linear regression analysis. Any association between the different study parameters and the serum levels of IL-6, IL-6R, or IL-6/IL-6R complex were determined by stepwise linear regression analysis. The serum IL-6 level in diabetic subjects was significantly higher than in normal healthy controls (3.48 ± 3.29 pg/ml vs 0.784 ± 0.90 pg/ml, mean ± SD, respectively, P = 0.0001). The specific optical density of the serum IL-6/IL-6R complex in diabetic patients was also significantly higher than in normal healthy controls, although there was no significant difference in the serum IL-6R level between diabetic patients and controls. The serum IL-6 concentration was correlated significantly with the HbA1C level (β = 0.58, P = 0.04) by multiple regression analysis. Stepwise regression analysis revealed that the levels of serum IL-6 (F = 8.251), HbA1C (F = 1.08), and serum urea nitrogen (F = 5.603) were associated with the plasma fibrino gen concentration. These results suggest that hyperglycaemia and increased levels of serum IL-6 can increase the plasma fibrinogen concentration, one of the known risk factors for atherosclerosis in patients with type 2 diabetes mellitus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...