Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 8 (1988), S. 65-79 
    ISSN: 0271-2091
    Keywords: Boundary-type finite element method ; Mild-slope equation ; Wave diffraction-refraction ; Harbour oscillation ; Co non-conforming element ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A new combinative method of boundary-type finite elements and boundary solutions is presented to study wave diffraction-refraction and harbour oscillation problems. The numerical model is based on the mild-slope equation. The key feature of this method is that the discretized matrix equation can be formulated only by the calculation of a line integral, since the interpolation equation which satisfies the governing equation in each element is used. The numerical solutions are compared with existing analytical, experimental, observed and other numerical results. The present method is shown to be an effective and accurate method for water surface wave problems.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 15 (1992), S. 1037-1057 
    ISSN: 0271-2091
    Keywords: Automatic mesh generation method ; Courant number ; Numerical accuracy and stability ; Shallow water flow ; Tsunami wave propagation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper presents a new automatic mesh generation method for the finite element analysis of shallow water flow. The key feature of this method is that the finite element mesh can be generated so that the element Courant number is nearly constant in the whole domain. It follows that the numerical stability and accuracy improve automatically. Moreover, the finite element mesh data, including the data of water depth, can be prepared automatically. The three-node triangular element is used for the finite element. In order to show the efficiency of the method presented, the mesh obtained by this method is applied to some shallow water flow analyses. This method is shown to be a useful and powerful tool for the preparation of optimal finite element mesh data for shallow water flow analysis.
    Additional Material: 27 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 8 (1988), S. 559-578 
    ISSN: 0271-2091
    Keywords: Boundary-type finite element method ; Helmholz equation ; Mild-slope equation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The boundary-type finite element method has been investigated and applied to the Helmholz and mild-slope equations. Four types of interpolation function are examined based on trigonometric function series. Three-node triangular, four-node quadrilateral, six-node triangular and eight-node quadrilateral elements are tested; these are all non-conforming elements. Three types of numerical example show that the three-node triangular and four-node quadrilateral elements are useful for practical analysis.
    Additional Material: 22 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0271-2091
    Keywords: Nearshore Current ; Two Step Explicit Scheme ; Linear Interpolation Function ; Fujisawa Coast ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A finite element method for the analysis of nearshore current, which is one of the principal currents in coastal seas, is presented in this paper. Because the nearshore current is induced by the variable distribution of the surface waves, it is necessary to analyse two main characteristics of the wave, i.e. direction and height. The current can be computed using the resulting wave characteristics. The present method makes it possible to employ procedures for which the same methods of solution are applicable for all basic equations of wave direction, height and current flow. The linear interpolation function is used for the discretization of spatial variables and a selective lumping two step explicit scheme is employed for the numerical integration in time. The numerical solutions obtained are compared with analytical, experimental and observed ones. From these comparative studies, it is concluded that the present finite element method provide a useful tool for the analysis of nearshore current.
    Additional Material: 24 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 21 (1995), S. 885-900 
    ISSN: 0271-2091
    Keywords: three-step explicit scheme ; parallel computing ; shallow water flow ; tidal flow ; Tokyo Bay ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Massively parallel finite element strategies for large-scale computations of shallow water flows and contaminant transport are presented. The finite element discretizations, carried out on unstructured grids, are based on a three-step explicit formulation both for the shallow water equations and for the advection-diffusion equation governing the contaminant transport. Parallel implementations of these unstructured-grid-based formulations are carried out on the Army High Performance Computing Research Center Connection Machine CM-5. It is demonstrated with numerical examples that the strategies presented are applicable to large-scale computations of various shallow water flow problems.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 24 (1997), S. 1371-1389 
    ISSN: 0271-2091
    Keywords: parallel finite element method ; three-step explicit formulation ; implicit space-time formulation ; storm surge ; tidal flow ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Massively parallel finite element methods for large-scale computation of storm surges and tidal flows are discussed here. The finite element computations, carried out using unstructured grids, are based on a three-step explicit formulation and on an implicit space-time formulation. Parallel implementations of these unstructured grid-based formulations are carried out on the Fujitsu Highly Parallel Computer AP1000 and on the Thinking Machines CM-5. Simulations of the storm surge accompanying the Ise-Bay typhoon in 1959 and of the tidal flow in Tokyo Bay serve as numerical examples. The impact of parallelization on this type of simulation is also investigated. The present methods are shown to be useful and powerful tools for the analysis of storm surges and tidal flows. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 22 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 21 (1985), S. 1833-1852 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: There are many physical phenomena which can be handled by the Helmholtz equation. The equation explains certain phenomena of wave propagation. This paper presents a new finite element method to analyse surface wave motion. The characteristic point of this method is that the interpolation equation is chosen to satisfy the governing Helmholtz equation using trigonometric functions. This follows that the variational functional to be minimized can be formulated such that the integration is limited to the boundary of the element. The numerical solutions obtained are compared with analytical and experimental solutions. From these comparative studies, it is concluded that the present method provides a useful tool for the analysis of surface wave motion.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...