Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 104 (1996), S. 3732-3741 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Our recently introduced stochastic method for molecular dynamics simulations at constant temperature [J. Chem. Phys. 100, 566 (1994)] which is based on impulsive collisions between system particles and heat bath particles of finite masses, is extended and analyzed for the case of an ensemble of harmonic oscillators as a simple but theoretically solvable model for interacting systems. This model case can be considered, e.g., as a single normal mode of a polyatomic molecule. Both position space properties and velocity space properties are investigated. Analytical expressions for stationary probability densities and autocorrelation functions are derived. The effect of the truncation of the Taylor series which is the basis of Verlet-type algorithms, on the resulting temperature in position space and velocity space is quantitatively discussed. It is demonstrated that the system temperature in position space and in velocity space is controlled by complex parameter functions. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 100 (1994), S. 566-576 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A new stochastic collision model for molecular dynamics (MD) simulations at constant temperature is presented. It is based on impulsive collisions between system particles and heat bath particles of finite masses. With the algorithm one can switch between Langevin-type and Andersen-type dynamics by changing only one control parameter. The method is implemented in the simple Verlet scheme for the numerical calculation of the Newtonian equations of motion. The case of an ensemble of noninteracting particles subjected to the heat bath is considered. Analytical expressions for stationary probability densities, autocorrelation functions, and diffusion coefficients are derived. The predicitions agree excellently with the results of MD simulations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 14 (1993), S. 1290-1300 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The quantification of surface roughness of globular proteins and synthetical macromolecules in the globular state is discussed using the concept of fractality. The Hausdorff dimension as a measure for local and global fractality of surfaces is applied. To calculate the Hausdorff dimension of any surface at a high level of accuracy, a new algorithm is presented that is based on a triangulated solvent-accessible molecular surface. It can be demonstrated that protein surfaces (as calculated on the basis of experimentally determined structures) as well as surfaces of globular polyethylene (PE) conformers (calculated on the basis of structural information basing on extensive Monte Carlo and molecular dynamics simulations) in fact show self-similarity within a reasonable yardstick range, at least in a global statistical sense. The same is true for parts of a protein surface provided that these regions are not too small. The concept of self-similarity breaks down when individual surface points are considered. The results obtained for the fractal dimension of PE surfaces (average fractal dimension D = 2.23) lead to the conclusion that protein surfaces probably do not exhibit a unique and specific degree of geometrical complexity (or surface roughness) characterized by a fractal dimension of approximately D = 2.2 as was argued in the past. It is clear that the concept of self-similarity is helpful for the classification of surface roughness of large molecules, but it seems questionable whether this concept is useful for the identification of active sites or other questions related to the field of molecular recognition. © John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...