Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 2 (1982), S. 115-130 
    ISSN: 0886-1544
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The relationship between the cytoskeleton, stress fiber formation, and cell shape has been difficult to determine in fibroblasts grown in tissue culture. Vagaries in cell shape are complicated, as well, by stochastic cell movements. We dictated the attachment sites and shape of fibroblasts by growing them on square adhesive substrates surrounded by nonadhesive substrates. Cytoskeletal models were made by treating the cells with buffered Triton X-100 and glycerol. The residues were then examined by scanning electron microscopy followed by light microscopy of the same cells. The cytoskeletons of randomly moving cells were examined with whole mount transmission microscopy to confirm images seen with scanning microscopy. The cells thus examined demonstrated definite relationships between ruffling activity and stress fiber terminations, which were limited to the more adhesive, palladium substrate. No stress fibers were seen to end on the lesser adhesive substrate, agarose, and ruffling did not occur across the agarose. Cells too small to fill an entire square tended to extend across one diagonal of the square, and the stress fibers ran parallel to the longest axis of these cells. Larger cells were able to completely fill their squares. The cytoskeletons of these cells were organized in a spatial relation to the square shape of the cells. The cortical meshwork was aligned circularly and diagonally within the cells. Stress fibers appeared to form from the microfilaments of the meshwork and were aligned diagonally across the cells. We conclude that the diagonal arrangement of the stress fibers and cortical meshwork is caused by the same mechanism by which smaller cells spread over the longest axis of a square. Regions of cells where the meshwork was absent or where stress fibers were tightly bundled were occupied by more randomly arranged cytoskeletal components. Regions of tighyly bundled stress fibers did not seem to coincide with regions of cortical meshwork as seen by either whole mount transmission or scanning electron microscopy. Stress fibers were revealed in the light microscope to course beneath more randomly oriented cytoskeletal elements. These “lacework-like” elements were found frequently in square cells. Conspicuous structures in this random lacework were focal points of radially arranged filaments. Our observations suggest a continuity between stress fibers and the cortical microfilaments. The orientation of fibers and filaments was, in turn, dependent on cell shape for organization within the cell.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 174 (1972), S. 157-164 
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Tritiated digitonin of high specific activity has been incorporated into fixation of adult rat sciatic nerve. Electron microscope autoradiograms developed four to thirteen days after coating indicate highest concentration of label over or near myelin sheaths. Label is observed over areas of reasonable myelin preservation as well as in areas of artifact and membrane disruption. The technique is suggested for use as a means of fairly specific localization of free cholesterol in tissues. In addition, the activity of the isotope used permits visualization of autoradiograms after short exposure times.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...