Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: To ascertain if 17β-estradiol (E2)-induced proliferation could be attenuated by blocking the expression of endogenous transforming growth factor α (TGFα), estrogen receptor (ER)-positive, estrogen-responsive MCF-7 or ZR-75-1 cells and ER-negative, estrogen-nonresponsive MDA-MB-468 or HS-578T cells were infected with a recombinant amphotropic, replication-defective retroviral expression vector containing a 435 base pair (bp) Apa1-Eco R1 coding fragment of the human TGFα cDNA oriented in the 3′ to 5′ direction and under the transcriptional control of an internal heavy metal-inducible mouse metallothionein (MT-1) promoter and containing the neomycin (neo) resistance gene. E2-stimulated expression of endogenous TGFα mRNA was inhibited by 4-5-fold, and the production of TGFα protein was inhibited by 50-80% when M-1 mass-infected MCF-7 or MZ-1 mass-infected ZR-75-1 cells were treated with 0.75-1 μM CdCl2, whereas in comparably treated parental MCF-7 or ZR-75-1 cells there was no significant effect upon these parameters. E2-stimulated anchorage-dependent growth (ADG) and anchorage-independent growth (AIG) of the M-1 or MZ-1 cells was inhibited by 60-90% following CdCl2 treatment. In contrast, neither the ADG nor AIG of the parental noninfected MCF-7 or ZR-75-1 cells that were maintained in the absence or presence of E2 was affected by comparable concentrations of CdCl2. The ADG and AIG of TGFα antisense MD-1 mass-infected MDA-MB-468 cells that express high levels of endogenous TGFα mRNA were also inhibited by 1 μM CdCl2, whereas the ADG and AIG of MH-1 mass-infected HS-578T cells, a TGFα-negative cell line, were unaffected by CdCl2 treatment. These results suggest that TGFα may be one important autocrine intermediary in regulating estrogen-induced cell proliferation. © 1993 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1040-452X
    Keywords: EGF-like ligands ; Postnatal development ; RT-PCR ; Immunocytochemistry ; Immunoblotting ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Amphiregulin (Ar) and Cripto-1 (Cr-1) are growth promoting peptides that share amino acid sequence homology with epidermal growth factor (EGF). The present study examined Ar and Cr-1 mRNA and protein expression during various stages of C57BL/6 mouse mammary morphogenesis. Reverse transciption-polymerase chain reaction (RT-PCR) was used to detect transcripts for Ar and Cr-1 at all stages of mammary development. Immunocytochemical (ICC) localization demonstrated that in virgin 4-week to mature 12-week-old mouse fourth inguinal mammary gland, Ar and Cr-1 are expressed in the stromal cells, luminal epithelial cells, and myoepithelial cells of the branching ducts. Ar, and to lesser extent Cr-1, were also found in the epithelial cap cells and in the luminal epithelial cells of the advancing terminal end bud (TEB) from virgin 4-week and 6-week-old mice. Western blot analysis demonstrated that both Ar (28 and 26 kDa) and Cr-1 (90, 67, 56, and 21 kDa) proteins are expressed in virgin, 13.5 day midpregnant and in the 14 day lactating mammary gland. In addition, Ar and Cr-1 are associated with developing alveolar structures as determined by ICC. These results imply that together with EGF and transforming growth factor alpha (TGFα), Ar and Cr-1 may play salient roles as modifiers in the morphogenesis and differentiation of the mammary gland. © 1995 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...