Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0959-8103
    Keywords: Pseudomonas putida ; poly(β-hydroxyalkanoate) ; microbial polyesters ; poly[3-hydroxy-6(4-cyanophenoxy)hexanoate] ; non-linear optics ; in-vivo biodegradation ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Pseudomonas putida KT 2442 was utilized as biocatalyst to form optoactive poly(β-hydroxyalkanoate)s (PHAs) from a cosubstrate mixture of octanoate and the achiral polarizable carbon source 6(4-cyanophenoxy)hexanoate, CPH. COSY and heteronuclear multiplet quantum correlation experiments were used to assign 1H and 13C NMR signals of 3-hydroxy-6(4-cyanophenoxy)hexanoate (3HCPH) repeat units. The methine carbon of 3HCPH repeat units was sensitive to repeat unit sequence effects, indicating that a substantial fraction of 3HCPH centered triad sequences in the product contain neighboring 3-hydroxyoctanoate and 3-hydroxhexanoate repeat units. Comparing the thermal properties of 0 and 19.6 mol% 3HCPH samples by differential scanning calorimetry shows that 3HCPH incorporation results in melting at temperatures 〉64°C (not seen for the 0 mol% sample), more rapid crystallization and a new Tg transition at ∼ -21°C. These characteristics indicate that chains and/or chain segments are formed that are enriched in 3HCPH which phaseseparate and form a unique crystal structure. Measurements of second harmonic generation (SHG) intensities carried out using in-situ corona-poled samples showed weak SHG signals that increased by a factor of 8 for an increase in the 3HCPH content from 26 to 34 mol%. Comparatively higher SHG intensities (5 times) were found for PHAs which contained 5.1 mol% 3-hydroxy-6(4-nitrophenoxy)hexanoate (3HNPH) repeat units relative to a PHA with 17 mol% 3HCPH. In-vivo biodegradation studies of microbial polyesters prepared with and without 3HCPH repeat units showed that PHA chains with 3HCPH degraded to lesser extents (weight loss of ∼ 20 and 50% over 72 h incubations). The large increase in polydispersity from 1.9 to 4.3 observed during in-vivo biodegradation of microbial polyesters containing 3HCPH repeat units was attributed to the existence of chains with highly variable contents of 3HCPH repeat units.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...