Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-041X
    Keywords: Key words Combinatorial enhancer ; D-mef2 ; Founder cells ; Heart ; Somatic muscle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The Drosophila mef2 gene encodes a MADS domain transcription factor required for the differentiation of cardiac, somatic, and visceral muscles during embryogenesis and the patterning of adult indirect flight muscles assembled during metamorphosis. A prerequisite for D-MEF2 function in myogenesis is its precise expression in multiple cell types during development. Novel enhancers for D-mef2 transcription in cardiac and adult muscle precursor cells have been identified and their regulation by the Tinman and Twist myogenic factors have been demonstrated. However, these results suggested the existence of additional regulators and provided limited information on the specification of progenitor cells for different muscle lineages. We have further characterized the heart enhancer and show it is part of a complex regulatory region controlling the activation and repression of D-mef2 transcription in several cell types. The mutation of a GATA sequence in the enhancer changes its specificity from cardial to pericardial cells. Also, the addition of flanking sequences to the heart enhancer results in expression in a new cell type, that being the founder cells of a subset of body wall muscles. As tinman function is required for D-mef2 expression in both the cardial and founder cells, these results define a shared regulatory DNA that functions in distinct lineages due to the combinatorial activity of Tinman and other factors that work through adjacent sequences. The analysis of D-mef2-lacZ fusion genes in mutant embryos revealed that the specification of the muscle precursor cells involved the wingless gene and the activation of a receptor tyrosine kinase signaling pathway.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...