Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 336-338 (Apr. 2007), p. 1409-1413 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: There has been a great progress in the development of heat-resistant silicon carbide ceramics,owing to the better understanding of composition-microstructure-properties relations. Based on theprogress, it has been possible to fabricate heat-resistant SiC ceramics with improved fracture toughness.In this paper, three rare-earth oxides (Re2O3, Re=Er, Lu, and Sc) in combination with AlN were used assintering additives for a β-SiC containing 1 vol% α-SiC seeds. The effect of intergranular phase, usingRe2O3 and AlN as sintering additives, on the microstructure and mechanical properties of liquid-phasesintered,and subsequently annealed SiC ceramics were investigated. The microstructure and mechanicalproperties were strongly influenced by the sintering additive composition, which determines the chemistryand structure of IGP. The strength and fracture toughness of the Lu2O3-doped SiC were ∼700 MPa at1400oC and ∼6 MPa.m1/2 at room temperature, respectively. The beneficial effect of the new additivecompositions on high-temperature strength was attributed to the crystallization of the intergranular phase
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 558-559 (Oct. 2007), p. 897-902 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Both the presence and absence of an amorphous intergranular film (IGF) between theSiC grains have previously been reported in liquid-phase-sintered SiC ceramics (LPS-SiC). Thedominant factor(s) responsible for the grain boundary structure in LPS-SiC has not been clearlyrevealed. In the present study, LPS-SiC ceramics containing different compositions of sinteringadditives were fabricated and characterized with respect to their grain boundary structure, using bothscanning and transmission electron microscopy. The results suggest that the sintering additivecomposition plays a dominant role in the evolution of grain boundary structure in LPS-SiC
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 534-536 (Jan. 2007), p. 989-992 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Processing techniques for producing microcellular silicon carbide, mullite, and cordieriteceramics with cell densities greater than 108 cells/cm3 and cells smaller than 30 μm have beendeveloped by a reaction method that incorporates a polysiloxane and reactive fillers. The techniquesdeveloped in this study offer substantial flexibility for producing microcellular ceramics wherebycell size, cell density, degree of interconnectivity, composition, and porosity can all be effectivelycontrolled. It is demonstrated that the adjustment of filler composition enables the possibility oftailoring the composition and properties of the microcellular ceramics. The present results suggestthat the proposed novel processing techniques are suitable for the manufacture of microcellularceramics with high morphological uniformity
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 317-318 (Aug. 2006), p. 899-904 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Recently, a novel processing route for fabricating microcellular ceramics has beendeveloped. The strategy for making the microcellular ceramics involves: (i) forming some shapescontaining a mixture of preceramic polymer, expandable microspheres and optional fillers by aconventional ceramic forming method, (ii) foaming the compact by heating, (iii) cross-linking thefoamed body, and (iv) transforming the foamed body into microcellular ceramics by pyrolysis. Theflexural strength and compressive strengths of the microcellular ceramics were investigated; valuesup to 30 MPa and 100 MPa, respectively, were obtained at room temperature. The superiormechanical properties were attributed to homogeneous distribution of cells in microcellular ceramics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of the American Ceramic Society 88 (2005), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A novel processing route for developing open-cell, microcellular SiC ceramics has been developed. The strategy adopted for making microcellular SiC ceramics involved the following: (i) fabricating a formed body from a mixture of polysiloxane, phenol resin (used as a carbon source), polymer microbeads (used as sacrificial templates), and Al2O3–Y2O3 (an optional sintering additive); (ii) cross-linking the polysiloxane in the formed body; (iii) transforming the polysiloxane and phenol resin by pyrolysis into silicon oxycarbide and C, respectively; and (iv) synthesizing SiC by carbothermal reduction. By controlling the microbead and additive contents, it was possible to adjust the porosity so that it ranged from 60% to 95%.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 86 (2003), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Crack-healing behavior of liquid-phase-sintered (LPS) SiC ceramics has been studied as functions of heat-treatment temperature and crack size. Results showed that heat treatment in air could significantly increase the indentation strength. The heat-treatment temperature has a profound influence on the extent of crack healing and the degree of strength recovery. The optimum heat-treatment temperature depends on the softening temperature of an intergranular phase in each material. After heat treatment at the optimum temperature in air, the crack morphology almost entirely disappeared and the indentation strength recovered to the value of the smooth specimens at room temperature for the investigated crack sizes up to ∼200 μm. In addition, a simple heat treatment of SiC ceramics sintered with Al2O3–Y2O3–CaO at 1100°C for 1 h in air resulted in even further improvement of the strength, to a value of 1054 MPa (∼150% of the value of the unindented strength). Crack closure and rebonding of the crack wake due to oxidation of cracked surfaces were suggested as a dominant healing mechanism operating in LPS-SiC ceramics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 86 (2003), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A microcellular ceramic with cell densities 〉109 cells/cm3 and cells 〈10 μm was made with a preceramic mixture of polycarbosilane and polysiloxane. The preceramic compact was saturated with gaseous CO2, a large number of cells were nucleated and grown by using a thermodynamic instability induced by a rapid pressure drop, and the microcellular preceramic was transformed into a microcellular ceramic by pyrolysis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Silicon carbide (SiC) ceramics have been fabricated by hot-pressing and subsequent annealing under pressure with aluminum nitride (AlN) and rare-earth oxides (Y2O3, Er2O3, and Yb2O3) as sintering additives. The oxidation behavior of the SiC ceramics in air was characterized and compared with that of the SiC ceramics with yttrium–aluminum–garnet (YAG) and Al2O3–Y2O3–CaO (AYC). All SiC ceramics investigated herein showed a parabolic weight gain with oxidation time at 1400°C. The SiC ceramics sintered with AlN and rare-earth oxides showed superior oxidation resistance to those with YAG and Al2O3–Y2O3–CaO. SiC ceramics with AlN and Yb2O3 showed the best oxidation resistance of 0.4748 mg/cm2 after oxidation at 1400°C for 192 h. The minimization of aluminum in the sintering additives was postulated as the prime factor contributing to the superior oxidation resistance of the resulting ceramics. A small cationic radius of rare-earth oxides, dissolution of nitrogen to the intergranular glassy film, and formation of disilicate crystalline phase as an oxidation product could also contribute to the superior oxidation resistance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Using AlN and RE2O3 (RE = Y, Yb) as sintering additives, two different SiC ceramics with high strength at 1500°C were fabricated by hot-pressing and subsequent annealing under pressure. The ceramics had a self-reinforced microstructure consisting of elongated α-SiC grains and a grain-boundary glassy phase. High-temperature strength up to 1600°C was measured and compared with that of the SiC ceramics fabricated with AlN and Er2O3. SiC ceramics with AlN and Y2O3 showed the best strength (∼630 MPa) at 1500°C, while SiC ceramics with AlN and Er2O3 the best strength (∼550 MPa) at 1600°C.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Starting from three powder mixtures of 80 vol% SiC (100α, 50α/50β, 100β) and 20 vol% YAG, liquid-phase-sintered silicon carbide ceramics were prepared by hot pressing at 1800°C for 1 h under 25 MPa, and then by hot forging or annealing at 1900°C for 4 h under an applied stress of 25 MPa in argon. The phase transformation and texture development in the as-hot-pressed, hot-forged, and annealed SiC ceramics were investigated via X-ray diffraction (XRD) and the pole figure measurements. The 6H → 4H polytypic transformation was observed in samples consisting of both α- and β-SiC phases when subjected to compressive deformation but absent in the case of annealing, suggesting the deformation-enhanced solubility of aluminum in SiC. Deformation was also found to enhance the 3C → 4H transformation in the sample containing entirely β-phase, which is due to the accelerated solution-precipitation process assisted by grain boundary sliding. The current study showed that the β- →α-phase transformation had little effect on texture development in SiC. Hot forging generally produced the strongest texture, with the calculated maximum of 2.2 times random in samples started with pure α-SiC phase. The mechanism for texture development was explained based on the microstructural observations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...