Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Chicago : Periodicals Archive Online (PAO)
    Signs. 13:3 (1988:Spring) 623 
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Chicago : Periodicals Archive Online (PAO)
    Signs. 13:3 (1988:Spring) 623 
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Chicago : Periodicals Archive Online (PAO)
    Signs. 13:4 (1988:Summer) 878 
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Chicago : Periodicals Archive Online (PAO)
    Signs. 13:3 (1988:Spring) 623 
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-7365
    Keywords: Cholinergic-specific promoter ; PC12 cells ; calcineurin ; neurite outgrowth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We have characterized a region of the mouse vesicular acetylcholine transporter(VAChT)/choline acetyltransferase (ChAT) gene locus that serves as a cholinergic-specific promoter for the expression of both VAChT and ChAT genes, as well as a reporter gene (LacZ) in vivo. We have used this promoter to direct the expression of an inhibitor peptide, derived from the calcineurin (CalN) autoregulatory domain, to directly neutralize the function of CalN to define the role of this Ca2+/Calmodulin regulated phosphatase in neurite outgrowth. Targeted inhibition of CalN promotes neurite outgrowth in PC12 cells in the presence of NGF, as early as 24 h after transfection. Inhibition of CalN-mediated enhancement of neurite outgrowth in PC12 cells reaches a maximum effect within the first 4 to 6 days after transfection, and does not cause adverse effects when highly expressed for up to 12 days. Cyclosporin A, a nontargeted CalN inhibitor, increases the number of neurites in mock transfected cells by 1.5 fold, while in transfected PC12 cells, the expression of the CalN inhibitor peptide increases the neurite number by 1.8 fold. These data demonstrate that CalN is an important regulator of the neurotrophic response in cholinergic cells and may prove valuable in developing treatment strategies to promote recovery from neurological Injury.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 27 (1994), S. 193-205 
    ISSN: 0886-1544
    Keywords: amoeboid motility ; fluorescence ratio imaging ; BCECF ; nematodes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The development and locomotion of the amoeboid sperm of the nematode, Ascaris suum, depend on precise control of the assembly of their unique major sperm protein (MSP) filament system. We used fluorescence ratio imaging of cells loaded with BCECF to show that intracellular pH (pHi) is involved in controlling MSP polymerization in vivo. Spermatogenesis is marked by a cycle of MSP assembly-disassembly-reassembly that coincides with changes in pHi. In spermatocytes, which contain MSP in paracrystalline fibrous bodies, pHi was 6.8, 0.6 units higher than in spermatids, which disassemble the fibrous bodies and contain no assemblies of MSP filaments. Activation of spermatids to complete development resulted in rapid increase in pHi to 6.4 and reappearance of filaments. Treatment of spermatocytes with weak acids caused the fibrous bodies to disassemble whereas incubation of spermatids in weak bases induced MSP assembly. The MSP filaments in spermatozoa are organized into fiber complexes that flow continuously rearward from the leading edge of the pseudopod. These cells established a pseudopodial pH gradient with pHi 0.15 units higher at the leading edge, where fiber complexes assemble, than at the base of the pseudopod, where disassembly occurs. Acidification of these cells caused the MSP cytoskeleton to disassemble and abolished the pH gradient. Acid removal resulted in reassembly of the cytoskeleton, re-establishment of the pH gradient, and re-initiation of motility. MSP assembly in sperm undergoing normal development and motility and in cells responding to chemical manipulation of pHi occurs preferentially at membranes. Thus, we propose that filament assembly in sperm is controlled by pH-sensitive MSP-membrane interaction. © 1994 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 20 (1991), S. 228-241 
    ISSN: 0886-1544
    Keywords: fine filaments ; intracellular pH ; motility ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The cytoskeleton of the amoeboid spermatozoa of Ascaris suum consists of major sperm protein (MSP) filaments arranged into long, branched fiber complexes that span the length of the pseudopod and treadmill rearward continuously due to assembly and disassembly at opposite ends of the complexes (Sepsenwol et al., Journal of Cell Biology 108:55-66, (1989)). Examination by video-enhanced microscopy showed that this cytoskeletal flow is tightly coupled to sperm locomotion. The fiber complexes treadmilled reaward at the same rate (10-50 μm/ min) as the cell crawled forward. Only fiber complexes with their plasmalemmal ends within a limited sector along the leading edge of the pseudopod underwent continuous assembly. Thus, the location of this sector, which occupies about 50% of the pseudopod perimeter, determined the direction of sperm locomotion. Treatment of sperm with agents that lower intracellular pH, such as, weak acids and protonophores, caused the fiber complexes to disassemble completely in 4-5 sec. Removal of these compounds resulted in reassembly of the cytoskeleton in a pattern that mimicked treadmilling in intact sperm. The fiber complexes were reconstructed by assembly at their plasmalemmal ends so that within 30-60 sec the entire filament system reformed and the cell resumed locomotion. Both cytoskeletal reassembly and treadmilling required exogenous HCO3-. These results suggest that variation in intracellular pH may help regulate cytoskeletal treadmilling and thereby play a significant role in sperm locomotion.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 58 (1995), S. 175-180 
    ISSN: 0730-2312
    Keywords: mitosis ; mitotic catastrophe ; apoptosis ; cell cycle components ; Cdc2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Programmed cell death, or apoptosis, is a highly regulated process used to eliminate unwanted or damaged cells from multicellular organisms. The morphology of cells undergoing apoptosis is similar to cells undergoing both normal mitosis and an aberrant form of mitosis called mitotic catastrophe. During each of these processes, cells release substrate attachments, lose cell volume, condense their chromatin, and disassemble the nuclear lamina. The morphological similarities among cells undergoing these processes suggest that the underlying biochemical changes also may be related. The susceptibility of cells to apoptosis frequently depends on the differentiation state of the cell. Additionally, cell cycle checkpoints appear to link the cell cycle to apoptosis. Deregulation of the cell cycle components has been shown to induce mitotic catastrophe and also may be involved in triggering apoptosis. Some apoptotic cells express abnormal levels of cell cycle proteins and often contain active Cdc2, the primary kinase active during mitosis. Although cell cycle components may not be involved in all forms of apoptosis, in many instances cell proliferation and cell death may share common pathways.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...