Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Erscheinungszeitraum
  • 1
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: We have previously reported the occurrence of two endogenous protein phosphorylation systems in mammalian brain that are enhanced in the presence of 3-phosphoglycerate (3PG) and ATP. We present here a study of one of these systems, the phosphorylation of the 72-kDa protein (3PG-PP72). This system was separated into the substrate, 3PG-PP72, and a kinase by ammonium sulfate fractionation, hydroxyapatite chromatography, and hydrophobic interaction HPLC. The substrate protein was shown to be directly phosphorylated with [1-32P]1,3-bisphosphoglycerate ([1-32P]1,3BPG) with an apparent Km of 1.1 nM. Nonradioactive 1,3BPG inhibited 32P incorporation in the presence of [γ-32P]ATP and 3PG. Phosphopeptide mapping and phosphoamino acid analyses indicated that the site of phosphorylation of 3PG-PP72 observed in the presence of 3PG and ATP is a serine residue identical to that observed with [1-32P]1,3BPG. Moreover, [32P]phosphate incorporated into 3PG-PP72 in the presence of 3PG and ATP was removed by subsequent incubation with glucose-1-phosphate or glucose-6-phosphate. Finally, 3PG-PP72 showed chromatographic behaviors identical to those of glucose-1,6-bisphosphate (G1,6P2) synthetase. Based upon these observations, we conclude that 3PG-PP72 is G1,6P2 synthetase and that it is phosphorylated directly by 1,3BPG, which is formed from 3PG and ATP by 3PG kinase present in a crude 3PG-PP72 preparation.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 54 (1990), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: We have demonstrated previously that L-glutamate is taken up into isolated synaptic vesicles in an ATP-dependent manner, supporting the neurotransmitter role of this acidic amino acid. We now report that a nerve terminal cytosolic factor inhibits the ATP-dependent vesicular uptake of glutamate in a dose-dependent manner. This factor appears to be a protein with a molecular weight 〉100,000, as estimated by size exclusion chromatography, and is precipitated by ammonium sulfate (40% saturation). The inhibitory factor is inactivated by heating to 100°C. Proteolytic digestion of the ammonium sulfate fraction by trypsin or chymotrypsin did not reduce, but rather increased slightly, the inhibition of glutamate uptake. Unlike the native factor, the digest retained inhibitory activity after heating, suggesting that proteolytic digestion may generate active fragments. The inhibition of ATP-dependent vesicular glutamate uptake is not species-specific, as the factor obtained from both rat and bovine brains produced an equal degree of inhibition of glutamate uptake into vesicles of each species. These observations raise the possibility that vesicular uptake of glutamate may be regulated by an endogenous factor in vivo.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 53 (1989), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: The ATP-dependent uptake of l-glutamate into synaptic vesicles has been well characterized, implicating a key role for synaptic vesicles in glutamatergic neurotransmission. In the present study, we provide evidence that vesicular glutamate uptake is selectively inhibited by the pep-tide-containing halogenated ergot bromocriptine. It is the most potent inhibitor of the agents tested; the IC5o was de-termined to be 22 μM. The uptake was also inhibited by other ergopeptines such as ergotamine and ergocristine, but with less potency. Ergots devoid of the peptide moiety, however, such as ergonovine, lergotrile, and methysergide, had little or no effect. Although bromocriptine is known to elicit dopaminergic and serotonergic effects, its inhibitory effect on vesicular glutamate uptake was not mimicked by agents known to interact with dopamine and serotonin receptors. Kinetic data suggest that bromocriptine competes with glutamate for the glutamate binding site on the glutamate trans-locator. It is proposed that this inhibitor could be useful as a prototype probe in identifying and characterizing the vesicular glutamate translocator, as well as in developing a more specific inhibitor of the transport system.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 51 (1988), S. 0 
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: The ATP-dependent glutamate uptake system in synaptic vesicles prepared from mouse cerebellum was characterized, and the levels of glutamate uptake were investigated in the cerebellar mutant mice, staggerer and weaver, whose main defect is the loss of cerebellar granule cells, and the nervous mutant, whose main defect is the loss of Purkinje cells. The ATP-dependent glutamate uptake is stimulated by low concentrations of chloride, is insensitive to aspartate, and is inhibited by agents known to dissipate the electrochemical proton gradient. These properties are similar to those of the glutamate uptake system observed in the highly purified synaptic vesicles prepared from bovine cortex. The ATP-dependent glutamate uptake system is reduced by 68% in the staggerer and 57–67% in the weaver mutant; these reductions parallel the substantial loss of granule cells in those mutants. In contrast, the cerebellar levels of glutamate uptake are not altered significantly in the nervous mutant, which has lost Purkinje cells, but not granule cells. In view of evidence that granule cells are glutamatergic neurons and Purkinje cells are GABAergic neurons, these observations support the notion that the ATP-dependent glutamate uptake system is present in synaptic vesicles of glutamatergic neurons.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...