Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 1141-1146 
    ISSN: 0006-3592
    Keywords: biofilm ; diffusion ; diffusivity ; immobilized cells ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An experimental reactor consisting of two chambers, separated by a porous ceramic immobilization matrix, was constructed to measure the effective diffusivity of different compounds and the consumption rates of acetate in developing biofilms. In initial experiments, effective diffusivities for acetate, propionate, isopropanol, and lithium salt through the ceramic immobilization matrix in the absence of biofilm were determined to be 40% to 50% less than in water at infinite dilution. The effective diffusivity of the lithium salt was similar to that of acetate. The effective diffusivity of the lithium salt through biofilms of thickness in the range of 200 to 1200 μm was essentially constant with a value of approximately 7% of that in water at infinite dilution. Acetate consumption in the biofilm was linearly proportional to biofilm thickness up to a biofilm depth of 800 μm. Deviation from linearity appeared in biofilm thicknesses greater than 800 μm. Results of these experiments support previous reports that immobilized cell reactors have significantly higher bioconversion rates than suspended cell systems.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...