Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 27 (1988), S. 2597-2603 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-069X
    Keywords: Key words Aspartic proteinase ; Skin ; Cathepsin D
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The present study demonstrated a noninvasive procedure for in situdetermination of stratum corneum aspartic proteinase in the living animal. A non-leaky well, containing [125I]S-carboxymethylated insulin B-chain (ICMI) as a substrate, was constructed on the shaved back of anesthetized guinea pigs and rats. The enzymatic activity was determined by measuring the radiolabeled trichloroacetic acid soluble material. We demonstrated pepstatin-sensitive proteinase activity bound to the skin surface indicating the involvement of aspartic proteinase(s) such as cathepsin D and/or E. Aged rats had about six fold lower activity than young animals. The proteinase activity was inhibited by the alkylating agent mechlorethamine and by the cosmetic propylene glycol. A similar procedure was carried out with intact human skin pieces obtained during plastic surgery. The activity was inhibited by antihuman cathepsin D antibodies. Cathepsin D was immunohistochemically localized in the corneal and granular layers of the epidermis. Skin surface aspartic proteinase/cathepsin D activity may serve as a marker for skin aging or for certain skin disorders leading to a new approach to their medical treatments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-904X
    Keywords: experimental colitis ; adhesive antioxidant enzymes ; cationization ; superoxide dismutase (SOD) ; catalase ; local attachment ; 5-aminosalicylic acid (5-ASA) ; betamethasone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. To investigate the possibility of local treatment of colitis with the adhesive antioxidant enzymes catalase and superoxide dismutase (SOD). Methods. The net electric charge of the enzymes’ surfaces was modified from negative to positive, to cause their adherence to the colon epithelium. The effects of this local administration were assessed in inflamed rat colon. Inflammation severity (colitis) was assessed by measuring colonic tissue myeloperoxidase (MPO) activity, amounts of tumour necrosis factor alpha (TNFα) and concentrations of reduced glutathione (GSH). The measurements were carried out in two types of protocols: preventive (pre-colitis induction) and treatment (post-colitis induction). In addition, the efficacy of treatment with the cationized enzymes was compared to 5-aminosalicylic acid (5-ASA) and betamethasone with similar administration routes. Results. The two cationized antioxidant enzymes were found to be efficient in both prevention and treatment of experimental colitis. The two cationized enzymes caused a significant reduction in MPO activity. A reduction in TNFα concentration was noted only after the treatment protocol. No correlation was found between inflammation severity and tissue levels of GSH. In most cases the cationized enzymes were more effective than 5-ASA and betamethasone. Conclusion. Cationized catalase and cationized SOD have the potential to be efficient therapeutic tools in the local treatment of colitis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-4919
    Keywords: ROS ; antioxidants ; ulcerative colitis ; colon ; low molecular weight antioxidants ; catalase ; superoxide dismutase ; cyclic voltammeter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The ability of the gastrointestinal (GI) tract, as well as other tissues, to cope with reactive oxygen species (ROS) efflux in pathological events is determined partly by epithelial antioxidant levels. These levels are comprized of tissue antioxidant enzymes and low molecular weight antioxidants (LMWA). While glutathione levels and the activity of enzymatic antioxidants along the GI tract have been studied, the contribution of the overall LMWA to the total antioxidant capacity has not yet been determined. In this study the overall antioxidant activity in the mucosa/submucosa and muscularis/serosa of various sections along the small intestine and colon of the rat was evaluated by determining the reducing power, which reflects the total antioxidant activity derived from LMWA, using cyclic voltammetry. The activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase was also measured. The reducing power (total antioxidant activity) was higher in the mucosa/submucosa of the small intestine as compared to the mucosa/submucosa of the colon. Similarly, catalase and SOD activity in the mucosa/submucosa of the small intestine was significantly higher than in the mucosa/submucosa of the colon. Differences were also observed in the reducing power and SOD activity in the muscularis/serosa of the rat small intestine as compared to the colon. The low antioxidant capacity in the colon may facilitate reactive oxygen species (ROS)-mediated injury and lead to inflammatory diseases such as ulcerative colitis, specifically in the colon.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-2576
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The assumption that cellular injury induced in infectious and in inflammatory sites might be the result of a well-orchestrated, synergistic “cross-talk” among oxidants, membrane-damaging agents, proteinases, and xenobiotics was further investigated in a tissue culture model employing monkey kidney epithelial cells (BGM) labeled either with51chromium or [3H] arachidonate. The cells could be killed in a synergistic manner following exposure to combinations among H2O2 and the following membrane-damaging agents: streptolysins S (SLS) and O (SLO), poly-d-lysine, arachidonic acid, eicosapentanoic acid, arachidic acid, lysophosphatidylcholine, lyso-phosphatidylinositol, lysophosphatidylglycerol, ethanol, and sodium taurocholate. Peroxyl radical (ROO) generated by azobisdiamidinopropane dihydrochloride (AAPH) further enhanced cell killing induced by SLS, SLO, and nitroprusside when combined with H2O2 and trypsin. BGM cells labeled either with chromium or with tritiated arachidonate, which had been treated with increasing concentrations of sodium nitroprusside (a donor of NO) and with subtoxic amounts of SLS and H2O2, were also killed in a synergistic manner and also lost a substantial amounts of their arachidonate label. Both cell killing and the release of membrane lipids were totally inhibited by hemoglobin (an NO scavenger) but not by methylene blue, an antagonist of NO2. BGM cells that had been treated with increasing concentrations of taurocholic acid were killed in a synergistic manner by a mixture of subtoxic amounts of ethanol, H2O2, and crystalline trypsin (quadruple synergism). Normal human serum possessing IgM complement-dependent cytotoxic antibodies against Ehrlich ascites tumor cells were killed in a dose-dependent fashion. Cell killing was doubled by the addition of H2O2. Cell killing and the release of membrane lipids by all the mixture of agonists tested were both strongly inhibited by the antioxidants catalase, Mn2+, vitamin A, and by fresh carrot juice. It appears that in order to overcome the antioxidant capacities of the epithelial cells, a variety of membrane-damaging agents had to be present in the reaction mixtures. Taken together, it might be speculated that the killing of mammalian cells in infectious and in inflammatory sites is a synergistic phenomenon that might be inhibited by antagonizing the cross-talk among the various proinflammatory agonists generated by microorganisms by activated phagocytes or by combinations among these agents. Our studies might also open up new approaches to the assessment of the toxicity of xenobiotics and of safe drugs to mammalian cells by employing tissue culture techniques.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Inflammation 17 (1993), S. 227-243 
    ISSN: 1573-2576
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Human neutrophils (PMNs) suspended in Hanks' balanced salt solution (HBSS), which are stimulated either by polycation-opsonized streptococci or by phorbol myristate acetate (PMA), generate nonamplified (CL), luminol-dependent (LDCL), and lucigenin-dependent chemiluminescence (LUCDCL). Treatment of activated PMNs with azide yielded a very intense CL response, but only a small LDCL or LUCDCL responses, when horse radish peroxidase (HRP) was added. Both CL and LDCL depend on the generation of Superoxide and on myeloperoxidase (MPO). Treatment of PMNs with azide followed either by dimethylthiourea (DMTU), deferoxamine, EDTA, or detapac generated very little CL upon addition of HRP, suggesting that CL is the: result of the interaction among H2O2, a peroxidase, and trace metals. In a cell-free system practically no CL was generated when H2O2 was mixed with HRP in distilled water (DW). On the other hand significant CL was generated when either HBSS or RPMI media was employed. In both cases CL was markedly depressed either by deferoxamine or by EDTA, suggesting that these media might be contaminated by trace metals, which catalyzed a Fenton-driven reaction. Both HEPES and Tris buffers, when added to DW, failed to support significant HRP-induced CL. Nitrilotriacetate (NTA) chelates of Mn2+, Fe2+, Cu2+, and Co2+ very markedly enhanced CL induced by mixtures of H2O2 and HRP when distilled water was the supporting medium. Both HEPES and Tris buffer when added to DW strongly quenced NTA-metal-catalyzed CL. None of the NTA-metal chelates could boost CL generation by activated PMNs, because the salts in HBSS and RPMI interfered with the activity of the added metals. CL and LDCL of activated PMNs was enhanced by aminotriazole, but strongly inhibited by diphenylene iodonium (an inhibitor of NADPH oxidase) by azide, sodium cyanide (CN), cimetidine, histidine, benzoate, DMTU and moderately by Superoxide dismutase (SOD) and by deferoxamine. LUCDCL was markedly inhibited only by SOD but was boosted by CN. Taken together, it is suggested that CL generated by stimulated PMNs might be the result of the interactions among, NADPH oxidase, (inhibitable by diphenylene iodonium), MPO (inhibitable by sodium azide), H2O2 probably of intracellular origin (inhibitable by DMTU but not by catalase), and trace metals that contaminate salt solutions. The nature of the salt solutions employed to measure CL in activated PMNs is critical.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-2568
    Keywords: experimental colitis ; dinitrobenzene sulfonic-acid ; low-molecular-weight antioxidants ; glutathione ; oxidative stress ; cyclic voltammetry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Tissue antioxidant status is altered as a response to oxidative stress. This oxidative stress, caused by reactive oxygen species, is associated with inflammatory bowel disease (IBD). Our aim was to examine the relationship between total tissue low-molecular-weight antioxidant (LMWA) profile and inflammation severity in dinitrobenzene sulfonic acid (DNBS) experimental colitis in the rat. Rats were treated with three doses of DNBS: 1, 10, and 20 mg. Inflammation severity was assessed by tissue colonic wet weight, macroscopic evaluation, and tissue myeloperoxidase (MPO) activity. The capacity of water-soluble LMWA was assessed by measuring the reducing power of the tissues with cyclic voltammetry (CV) and by measuring tissue levels of reduced glutathione. While typical markers of inflammation (MPO, macroscopic examination, and colonic wet weight) indicated DNBS dose dependency, such dependency could not be demonstrated for the tissue LMWA as measured by reduced glutathione levels and by the tissues' reducing power. Mild colonic inflammation (induced by ethanol or by 1 mg of DNBS) caused an increase in the overall capacity of water-soluble LMWA. However, severe inflammation (induced by 20 mg of DNBS) caused a reduction in the tissue LMWA capacity. An intermediate dose of DNBS (10 mg) caused moderate inflammation, but did not cause a significant change in the tissue LMWA compared with a saline control treatment. In conclusion, LMWA changed in a biphasic pattern reflective of the severity of mucosal colonic inflammation. It is suggested that: low dose of DNBS (1 mg) and topical alcohol (25% v/v) caused an adaptation effect to the mild oxidative stress associated with mild inflammation. This resulted in an increase in the LMWA. A higher dose of DNBS (20 mg) caused more severe inflammation with an overall reduction in LMWA. The increased efflux of reactive oxygen species, associated with severe inflammation, led to an overall consumption of the tissue LMWA, which masked the increase in LMWA caused by the mild oxidative stress.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...