Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 111 (2001), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We investigated how the differences in growth and morphology, between fast-growing wildtype (Wt) tomato (Solanum lycopersicum L.) plants and slow-growing gibberellin (GA) deficient W335 mutants, were reflected in cell numbers and cell sizes. We also studied whether the differences between the Wt and the low-GA mutant would persist at a growth-limiting supply of nitrate. Both a low endogenous GA concentration and a low supply of nitrate reduced the number and size of leaf cells, whereas they increased the size and number of root cortex cells. The effects of low N-supply on the size and number of leaf and root cells did not depend on endogenous GA concentrations. The mutant's higher allocation to roots seemed to be the result of the strongly reduced growth of the shoot.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 111 (2001), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The growth-promoting effects of gibberellins (GAs) on plants are well documented, but a complete growth analysis at the whole plant level on plants with an altered GA biosynthesis has never been reported. In the present work, the relative growth rate (RGR), biomass partitioning and morphological parameters of wildtype (Wt) tomato (Solanum lycopersicum L. cv. Moneymaker) plants were compared with those of isogenic (gib) mutants with a reduced biosynthesis of gibberellins. GA deficiency reduced RGR and specific leaf area (SLA, leaf area per unit leaf mass) and increased the net assimilation rate (NAR, the rate of biomass increment per unit leaf area). Despite the free access to nitrogen in the rooting medium, the low-GA mutants had a much higher root mass ratio (RMR, the root mass per unit plant biomass) than the Wt, suggesting that the mutants were disturbed in their growth response to nitrate supply. The experiment was repeated at a low exponential nitrate supply, which forced all plants to grow at the same low RGR. The persistence of the differences in RMR at low N-supply indicated that the high RMR of the mutants was a direct effect of low GA, which was independent of nitrate supply. Because the low N-supply increased the RMRs of all genotypes to the same extent, the response of RMR to N-supply does not seem to depend on GA. Although many of the traits of the slow growing GA mutants were very similar to those of inherently slow growing plant species from unproductive habitats, gibberellins are unlikely to be a main determinant of a plant's potential RGR.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 92 (1994), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Given the close relationship between a plant's growth rate and its pattern of biomass allocation and the effects of abscisic acid (ABA) on biomass allocation, we studied the influence of ABA on biomass allocation and growth rate of wildtype tomato (Lycopersicon esculentum Mill. cv. Moneymaker) plants and their strongly ABA-deficient mutant sitiens. The relative growth rate of sitiens was 22% lower than that of the wildtype, as the result of a decreased specific leaf area. The net assimilation rate and the leaf weight ratio were not affected. The mutant showed a much higher transpiration rate and lower hydraulic conductance of the roots. These two factors resulted in sitiens having a significantly lower leaf water potential and turgor. resulting in reduced leaf expansion and, consequently, a lower specific leaf area relative to the wildtype. Addition of ABA to the sitiens roots resulted in phenotypic reversion to the wildtype. We conclude that the influence of ABA-deficiency on biomass allocation and relative growth rate is the result of altered water relations in the plants, rather than of a direct effect on sink strength of different plant organs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 60 (1984), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The influence of naphthylacetic acid, abscisic acid, gibberellic acid and kinetin on the formation of aerenchyma in seedling roots of Zea mays L. cv. Capella has been studied in relation to reported changes of their concentration in poorly aerated roots, which readily form aerenchyma, and to the effects of these hormones on the production of ethylene, a major factor promoting aerenchyma formation. Because the absence of nitrate accelerates aerenchyma formation in aerated roots, their influence on these roots was compared. The growth regulators were added to roots growing in non-aerated and aerated nutrient solutions, and aerenchyma formation and the production and endogenous concentration of ethylene were measured. Naphthylacetic acid prevented aerenchyma formation in both aerated roots without nitrate and in non-aerated roots although it enhanced the ethylene concentration of the roots. Abscisic acid also prevented aerenchyma formation, but without affecting the ethylene concentration. Gibberellic acid promoted aerenchyma formation in aerated roots only, but ethylene production in both aerated and non-aerated roots. Kinetin promoted aerenchyma formation in both aerated and non-aerated roots. It stimulated ethylene production in aerated roots, but slightly inhibited it in non-aerated roots. Co2+ and Ag+, which suppress ethylene production and action, respectively, reduced the promoting effects of gibberellic acid, but not those of kinetin. It is concluded that the effects of the plant growth regulators on aerenchyma formation in maize roots were, with a possible exception for gibberellic acid, not the result of altered ethylene concentrations in the roots. Their influence on aerenchyma formation is discussed in relation to their reported actions on cell membranes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Relative growth rate ; Leaf area ratio ; Net assimilation rate ; Allocation ; Root characteristics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The purpose of this study was to investigate various growth parameters, dry matter and nitrogen, phosphorus and potassium allocation and photosynthesis ofCarex acutiformis, C. rostrata andC. diandra growing in fens with, in this order, decreasing nutrient availability and decreasing aboveground productivity. Plants were grown from cuttings at optimum nutrient conditions in a growth chamber. Growth analysis at sequential harvests revealed that the species had no inherently different relative growth rates which could explain their different productivity, but that their LAR (LWR and SLA) decreased in the orderC. acutiformis, C. rostrata, C. diandra and their NAR increased in this order. All growth parameters decreased during plant growth even under the controlled conditions of the experiment.C. acutiformis allocated relatively much dry matter to the leaves,C. rostrata to the rhizomes andC. diandra to the roots. This may, in part, explain the higher aboveground biomass production ofC. acutiformis in the field. Nitrogen, but not phosphorus and potassium, allocation patterns were different for the three species.C. diandra, the species from the nitrogen-poorest site, had the highest leaf N content of the three species and also a higher chlorophyll content. Related to this, this species had the highest photosynthetic activity of whole plants both when collected from the field and when grown in the growth chamber. The nitrogen productivity was similar for the three species and the photosynthetic nitrogen use efficiency, determined forC. acutiformis andC. diandra, was similar for these two species.C. diandra had the most finely branched root system, i.e., the highest specific root length of the three species and its root surface area to leaf surface area ratio was also the highest. All three species showed higher nitrate reductase activity in the leaves than in the roots when grown on nutrient solution. The growth ofC. diandra at a relatively nutrient-poor site and a rather open low vegetation is assumed to be adapted to its habitat by a relatively high NAR made possible by a high rate of photosynthesis concurrent with a high leaf N content. The growth ofC. acutiformis at a relatively nutrient-rich site and a more dense and higher vegetation is adapted to its habitat by a high LAR.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5036
    Keywords: biomass allocation ; Carex species ; fen soil ; growth analysis ; nutrient (re)-allocation ; nutrient use efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Carex acutiformis, C. rostrata and C. diandra occur as dominant species in different floating fens in the ‘Vechtplassen’ area in the Netherlands and have, in this order, a lower annual biomass production concurrent with the deceasing nutrient availability in the fens. The species allocated proportionally equal amounts of biomass to the leaf blades, but Carex diandra invested more in the leaf sheaths and in the roots than the other two species and also had the greatest root length proportional to leaf area. The leaf area ratio was greatest in Carex acutiformis, but C. diandra had the highest net assimilation rate and the highest relative growth rate. These characteristics are presumably connected with the vegetation structure of the fens which becomes, in the order mentioned, more open with increasing irradiance of the whole plant. The N concentration in the leaf blades increased in the species order mentioned above, which is, remarkably, in the order of decreasing N-availability in the fens. The percentage distribution of N, P and K over the different plant parts was different for the three species and was also different from the distribution of biomass. The efficiency of nitrogen use in relation to biomass production was highest in Carex acutiformis and lowest in C. diandra, but the efficiency of phosphorus use was lowest in the first species. The percentage reallocation of N and P from senescing leaves and the contribution of reallocated N and P to total plant N and P content was similar in the three species. In this study not only the development of the aboveground plant parts was followed, but also that of the belowground parts, by growing detached tillers in open tubes, placed in the peat soil at their original growth site, so that direct and accurate measurements could be made of belowground and aboveground individual plant parts and of nutrient allocation patterns of these plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...