Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 11 (1969), S. 19-36 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Kinetic, studies were made on continuous cultivation applying the theory of microbial cell growth that was derived previously by the authors introducing the concepts of critical concentration and coefficient of consumption activity. General equations for microbial cell concentration for continuous cultivation in continuous-stirred tank and tubular type reactors were derived theoretically. Productivity of cell mass in continuous cultivation was analyzed kinetically and the behavior of mutant populations in continuous cultivation is briefly discussed.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 10 (1968), S. 105-131 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: As a rate equation of microbial cell growth, the Monod equation is widely used. However, this equation cannot fully correspond to real courses of microbial cell growth in many batch cultivations. Especially, predicted values based on this equation do not agree with observed values in many continuous cultivations. In this paper, which introduces new concepts of critical concentration and coefficient of consumption activity, the growth rate equation which corresponds to the whole period including lag period is newly derived and characteristics of microbial cell growth in batch cultivation are clarified. Further, applying the new rate equation to continuous cultivation, a general equation with which to calculate cell concentration is derived and characteristics of microbial cell growth in continuous cultivation are clarified. The calculated values of cell concentration based on the new theory showed quite good agreement with the observed values in both batch and continuous cultivation.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...