Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 15 (1992), S. 1213-1237 
    ISSN: 0271-2091
    Keywords: Physical component ; Lie derivative ; Physical curvilinear space ; Riemannian geometry ; Lagrangian front tracking ; Free surface ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: This paper presents a systematic and theoretically consistent approach for the analysis of free-surface flow, making use of a number of established ideas such as physical component, boundary-fitted co-ordinate (BFC) and Lagrangian front tracking. The approach extends, theoretically as well as numerically, the use of physical component to general non-orthogonal moving grids and provides a numerically stable BFC method with little labour of free-surface positioning, grid generation and grid renewal. The approach conserves mass even at the free surface and allows time step of the order of the Coulant number. The main body of the present paper starts with the definition of analytical space and Riemannian geometry intrinsic to the physical component by applying to it the theorems of differential geometry and manifold theory. Then the governing equations of flow and free surface for the physical component are defined in the general 3D form with the notation of the new Riemannian geometry. Numerical procedures and the fully discrete equations are also presented for the benefit of potential users. Finally, several 2D examples demonstrate the basic performance of the present method by showing the computability of complex free-surface motion.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 26 (1998), S. 751-769 
    ISSN: 0271-2091
    Keywords: MPS ; particle method ; incompressible flow ; free surface ; breaking wave ; surf similarity parameter ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The numerical method used in this study is the moving particle semi-implicit (MPS) method, which is based on particles and their interactions. The particle number density is implicitly required to be constant to satisfy incompressibility. A semi-implicit algorithm is used for two-dimensional incompressible non-viscous flow analysis. The particles whose particle number densities are below a set point are considered as on the free surface. Grids are not necessary in any calculation steps. It is estimated that most of computation time is used in generation of the list of neighboring particles in a large problem. An algorithm to enhance the computation speed is proposed. The MPS method is applied to numerical simulation of breaking waves on slopes. Two types of breaking waves, plunging and spilling breakers, are observed in the calculation results. The breaker types are classified by using the minimum angular momentum at the wave front. The surf similarity parameter which separates the types agrees well with references. Breaking waves are also calculated with a passively moving float which is modelled by particles. Artificial friction due to the disturbed motion of particles causes errors in the flow velocity distribution which is shown in comparison with the theoretical solution of a cnoidal wave. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...