Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 32 (1997), S. 2647-2654 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Reaction-bonded alumina was fabricated using standard powder preparation methods and the low-pressure injection moulding (LPIM) forming technique, followed by reaction sintering. The feasibility of LPIM was investigated in terms of the compounding ability of a highly agglomerated mechanically alloyed powder in a non-polar organic vehicle, and the microstructural homogeneity and resulting reliability of sintered LPIM parts. The green density of LPIM parts after debinding, roughly corresponding to the solids loading in the LPIM feedstock, was in the range of fractional density achieved by dry pressing, although the powder packing and aluminium particle deformation during forming were not the same. LPIM forming and debinding induced microstructural inhomogeneities (i.e. larger voids due to trapped air and density fluctuations) which were reflected in a slightly lower Weibull modulus, while the average strength did not differ significantly from the values obtained with dry pressed samples. The microstructure and mechanical properties of sintered parts were also related to the purity of the starting powders. The presence of impurities in the starting aluminium powder resulted in a somewhat coarser microstructure, characterized by a broader Al2O3 grain-size distribution, as well as in the presence of a thin glassy phase on the grain boundaries and in partial destabilization of dispersed tetragonal (Y2O3-stabilized) ZrO2 particles. In spite of a less favourable microstructure, the room-temperature strength and Weibull modulus were still comparable to those obtained from high-purity starting powder.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 32 (1997), S. 469-474 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Reaction-bonded Si3N4 toughened by oriented SiC platelets was fabricated via low pressure injection moulding (LPIM). Initially, the rheology of ceramic suspensions was optimized with respect to solid content, SiC platelet loading, particle surface properties and binder composition. Surface active additives were used to modify the particle–polymeric binder interphase in order to prevent particle reagglomeration, to reduce the viscosity and/or to increase the solid content. The relationship between LPIM processing variables and platelet orientation in injection moulded reaction bonded silicon nitride ceramics was studied and the resultant mechanical properties were compared to composites containing randomly dispersed platelets.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 28 (1993), S. 5179-5183 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The dilatation-temperature curves of the PZT-ZrO2 composites, containing 1.3–13.2 vol% ZrO2 were studied. The course of martensitic transformation (MT) of dispersed ZrO2 particles in the PZT matrix was followed. Upon cooling, a spontaneous microcrack formation occurred during the MT from tetragonal to monoclinic crystal phase of ZrO2. The phenomenon of intensive shrinkage above 800 °C upon heating is explained as a process of microcrack healing in the presence of the PbO-rich liquid phase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...