Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Algorithmica 13 (1995), S. 472-501 
    ISSN: 1432-0541
    Keywords: Motion planning ; Mobile robot navigation ; Uncertainty ; Landmark
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract Achieving goals despite uncertainty in control and sensing may require robots to perform complicated motion planning and execution monitoring. This paper describes a reduced version of the general planning problem in the presence of uncertainty and a complete polynomial algorithm solving it. The planar computes a guaranteed plan (for given uncertainty bounds) by backchaining omnidirectional backprojections of the goal until the set of possible initial positions of the robot is fully contained. The algorithm assumes that landmarks are scattered across the workspace, that robot control and position sensing are perfect within the fields of influence of these landmarks (the regions in which the landmarks can be sensed by the robot), and that control is imperfect and sensing null outside these fields. The polynomiality and completeness of the algorithm derive from these simplifying assumptions, whose satisfaction may require the robot and/or its workspace to be specifically engineered. This leads us to view robot/workspace engineering as a means to make planning problems tractable. A computer program embedding the planner was implemented, along with navigation techniques and a robot simulator. Several examples run with this program are presented in this paper. Nonimplemented extensions of the planner are also discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Algorithmica 26 (2000), S. 577-601 
    ISSN: 1432-0541
    Keywords: Key words. Assembly planning, Assembly sequencing, Motion space, Nondirectional blocking graph, Manufacturing.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract. Assembly planning is the problem of finding a sequence of motions to assemble a product from its parts. We present a general framework for finding assembly motions based on the concept of motion space . Assembly motions are parameterized such that each point in motion space represents a mating motion that is independent of the moving part set. For each motion we derive blocking relations that explicitly state which parts collide with other parts; each subassembly (rigid subset of parts) that does not collide with the rest of the assembly can easily be derived from the blocking relations. Motion space is partitioned into an arrangement of cells such that the blocking relations are fixed within each cell. We apply the approach to assembly motions of several useful types, including one-step translations, multistep translations, and infinitesimal rigid motions. Several efficiency improvements are described, as well as methods to include additional assembly constraints into the framework. The resulting algorithms have been implemented and tested extensively on complex assemblies. We conclude by describing some remaining open problems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...