Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Bulletin of Mathematical Biology 46 (1984), S. 19-40 
    ISSN: 0092-8240
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Mathematics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Bulletin of Mathematical Biology 46 (1984), S. 19-40 
    ISSN: 0092-8240
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Mathematics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 20 (1991), S. 387-414 
    ISSN: 0084-6589
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Medicine 37 (1986), S. 149-155 
    ISSN: 0066-4219
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Theoretical Biology 81 (1979), S. 475-503 
    ISSN: 0022-5193
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Theoretical Biology 110 (1984), S. 257-274 
    ISSN: 0022-5193
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1522-9602
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract In order for immune cells to carry out many of their functions, including clearance of infectious agents from tissue, they must first encounter their targets in the tissue. This encounter process is often the rate-limiting step in the overall function. Most immune cells exhibit chemotactic ability, and previous continuum models for encounter rates and dynamics have shown that chemotaxis can be a great advantage to cells by greatly increasing encounter rates relative to those for randomly moving cells. This paper describes computer simulations of discrete cell-target encounter events in two dimensions, for the two cases considered by the continuum models: where only a single cell and a single target are present, and where many cells and targets are present. The results of these simulations verify our previous model predictions that a small amount of chemotactic bias dramatically decreases the encounter time, while further increases in the amount of bias have a much smaller effect. Chemotactic ability is shown to be an important determinant of the kinetics of target clearance, and its effects depend on the initial cell-target ratio and the initial distributions of cells and targets. To the best of our knowledge, this work provides the first computer simulations of particle-target encounter in which there is biased motion of particles toward their targets, and is therefore of general interest beyond specific application to immune cell function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of mathematical biology 46 (1984), S. 19-40 
    ISSN: 1522-9602
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract A mathematical model for traveling bands of motile and chemotactic bacteria in the presence of cell growth and death is examined. It is found that asymptotic traveling wave solutions exist in the absence of chemotaxis, due to the balance of growth, death and random motility. Thus random motility confers the ecological advantage of population propagation through migration into nutrient-rich regions. The presence of chemotaxis amplifies this advantage by moving more cells into higher nutrient concentration regions, resulting in larger and faster bands. Therefore there seem to be two types of traveling bands that can be attained by chemotactic bacteria in the presence of growth and death: (1) these growth/death/motility bands; and (2) pure chemotactic ‘Keller-Segel'-type bands. Comparison to experimental observations by Chapman in 1973 indicate that the latter seem to be formed. The relationship between these two types of solution is at present uncertain. The growth/death/motility bands may have relevance on longer time or distance scales characteristic of microbial ecological systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 11 (1983), S. 451-477 
    ISSN: 1573-9686
    Keywords: Cell motility ; Chemotaxis ; Leukocytes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Random and chemotactic movement of leukocytes appear to be key processes in the host inflammatory response. Abnormalities in leukocyte motility and chemosensory behavior have been implicated in a large number of pathological conditions, but there is no adequate quantitative understanding of these properties. In this paper we present an approach for determination of phenomenological cell motility and chemotaxis parameters, by analysis of a common leukocyte migration assay. Using data from a set of cell migration experiments reported in the literature, we show how to determine the value of the random motility coefficient and its dependence upon concentration of a tripeptide chemotactic attractant, as well as the value of the chemotaxis coefficient, assumed here to be independent of attractant concentration. These parameters can be used to improve quantitative understanding of the relationship between leukocyte motility and chemosensory behavior and effective functioning of the host inflammatory response.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Journal of mathematical biology 25 (1987), S. 229-262 
    ISSN: 1432-1416
    Keywords: Chemotaxis ; Random motility ; Cell migration ; Cell orientation ; Receptor sensing ; Chemoreception ; Stochastic model ; Mathematical model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract We propose a hypothesis for a unified understanding of the persistent and biased random walk behavior of leukocytes exhibiting random motility and chemotaxis, respectively. This hypothesis is based on a description of the leukocyte as an integrated system sensing and responding to a “noisy” receptor signal: random fluctuations inherent in receptor-sensing of chemoattractant concentrations underlie the random walk behavior. Noise arises from real fluctuations in the receptor binding process, which translate into perceived fluctuations in receptor-measured concentration. The unbiased random walk characteristic of random motility arises from perceived fluctuating gradients without a mean reference direction and the biased random walk in chemotaxis arises due to the occurrence of perceived concentration fluctuations around the mean gradient. Analysis of a stochastic model based on this hypothesis yields an objective index of directional randomness in random motility, the directional persistence time, in terms of model parameters associated with receptor binding, receptor signal transduction, and the cell turning response. Simulation of the model equations yields cell paths from which the orientation behavior in a chemoattractant gradient is characterized in terms of the same model parameters. Our results provide a theoretical relationship between directional persistence and orientation bias and suggest quantitative answers to the questions: Is there an optimal level of persistence with respect to maximizing orientation bias? Do directional persistence and orientation bias both display the same parametric sensitivity? How does this sensitivity depend on the sensing, transduction, and response components of the cell system?
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...