Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 176 (1988), S. 10-18 
    ISSN: 1432-2048
    Keywords: Arachis (lectin) ; Glycine (lectin) ; Lectin (distribution) ; Legume nodules (lectin)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The direct double-antibody enzymelinked immunosorbent assay system was used in the detection and measurement of seed lectins from peanut (Arachis hypogaea L.) and soybean (Glycine max L.) plants (PSL and SBL, respectively) that had been inoculated with their respective rhizobia. Concentrations of PSL dropped to undetectable levels in peanut roots at 9 d and stems and leaves at 27 d after planting; SBL could no longer be detected in soybean roots at 9 d and in stems and leaves at 12 d. A lectin antigenically similar to PSL was first detected in root nodules of peanuts at 21 d reaching a maximum of 8 μg/g at 29 d then decreasing to 2.5 μg/g at 60 d. There was no evidence of a corresponding lectin in soybean nodules. Sugar haemagglutination inhibition tests with neuraminidase-treated human blood cells established that PSL and the peanut nodule lectin were both galactose/lactose-specific. Further tests with rabbit blood cells demonstrated a second mannosespecific lectin in peanut nodule extracts that was not detected in root extracts of four-week-old inoculated plants or six-week-old uninoculated plants, although six-week-old root extracts from inoculated plants showed weak lectin activity. The root extracts from both nodulated and uninoculated plants contained another peanut lectin that agglutinated rabbit but not human blood cells. Haemagglutination by this lectin was, however, not inhibited by simple sugars but a glycoprotein, asialothyroglobulin, was effective in this respect.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Arachis (lectins) ; Lectin (characterization) ; Nodule (lectin) ; Seed (lectin)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two lectins were purified by affinity chromatography from mature peanut (Arachis hypogaea L.) nodules, and compared with the previously characterised seed lectin of this plant. One of the nodule lectins was similar to the seed lectin in its molecular weight and amino-acid composition and ability to bind derivatives of galactose. However, unlike the seed lectin, this nodule lectin appeared to be a glycoprotein and the two lectins were only partially identical in their reaction with antibodies prepared against the seed lectin. The other nodule lectin also appeared to be a glycoprotein but bound mannose/glucose-like sugar derivatives, and differed from the seed lectin in molecular weight, antigenic properties and amino-acid composition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Mutant (Rhizobium) ; Nodulation ; Capsule (bacterial) ; Lectin ; Polysaccharide ; Rhizobium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Spontaneous mutants with altered capsule synthesis were isolated from a marked strain of the symbiont,Rhizobium japonicum. Differential centrifugation was used to enrich serially for mutants incapable of forming capsules. The desired mutants were detected by altered colony morphology and altered ability to bind host plant lectin. Three mutants failed to form detectable capsules at any growth phase when cultured in vitro or in association with the host (soybean,Glycine max (L.) Merr.) roots. These mutants were all capable of nodulating and attaching to soybean roots, indicating that the presence of a capsule physically surrounding the bacterium is not required for attachment or for infection and nodulation. Nodulation by several of the mutants was linearly proportional to the amount of acidic exopolysaccharide that they released into the culture medium during the exponential growth phase, indicating that such polysaccharide synthesis is important and perhaps required for nodulation. Two of the mutants appeared to synthesize normal lectin-binding capsules when cultured in association with host roots, but not when cultured in vitro. Nodulation by these mutants appeared to depend on how rapidly after inoculation they synthesized capsular polysaccharide.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 167 (1992), S. 10-18 
    ISSN: 1615-6102
    Keywords: Arachis hypogaea ; Lectin localization ; Peanut nodule lectins ; Root nodules
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Mannose/glucose- and galactose-binding lectins (ML and GL respectively, were located by immunogold labelling in tissues of a peanut (Arachis hypogaea) nodule induced by an effectiveBradyrhizobium sp. strain. Light and electron microscopic examination of silver-enhanced semithin and ultrathin sections, respectively, revealed that both lectins were widely distributed throughout the cortex and bacteroidal zones although ML was more abundant. The lectins were predominantly in the vacuoles of cortical cells but GL was absent from, or at low concentration in, a two-cell-thick layer of cortical cells surrounding the bacteroidal region. Only ML was detected in cells of the vascular bundle endodermis and in central vascular bundle cells; neither lectin was found in pericycle cells. Bacteroidal cells contained abundant ML in the nuclei and cytoplasm surrounding bacteroids while GL was mainly located in the central vacuoles of these cells. Neither lectin was associated with bacteroid surfaces, peribacteroid membranes, plant cell walls or cell organelles and membranes. The above observations indicate that the nodule lectins are not symbiotic cell recognition determinants and suggest that they have protein storage functions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...