Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 147-157 
    ISSN: 0730-2312
    Keywords: LPA ; S1P ; G protein ; intracellular signaling pathways ; Edg receptors ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are potent phospholipid mediators with diverse biological activities. Their appearance and functional properties suggest possible roles in development, wound healing, and tissue regeneration. The growth-stimulating and other complex biological activities of LPA and S1P are attributable in part to the activation of multiple G protein-mediated intracellular signaling pathways. Several heterotrimeric G proteins, as well as Ras- and Rho-dependent pathways play central roles in the cellular responses to LPA and S1P. Recently, several G protein-coupled receptors encoded by a family of endothelial differentiation genes (edg) have been shown to bind LPA or S1P and transduce responses of cAMP, Ca2+, MAP kinases, Rho, and gene transcription. This review summarizes our current understanding of signaling pathways critical for cellular responses to LPA and S1P and of recent progress in the molecular biological analyses of the Edg receptors. J. Cell. Biochem. Suppls. 30/31:147-157, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: PKA ; Raf-1 ; MAPK ; endothelial cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Proliferation of endothelial cells is regulated by angiogenic and antiangiogenic factors whose actions are mediated by complex interactions of multiple signaling pathways. Both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) stimulate cell proliferation and activate the mitogen-activated protein kinase (MAPK) cascade in bovine brain capillary endothelial (BBE) cells. We have extended these findings to show that both mitogens activate MAPK via stimulation of Raf-1. Activation of Raf/MAPK is inhibited by increasing intracellular cAMP levels pharmacologically or via stimulation of endogenously expressed β-adrenergic receptors. Both VEGF- and bFGF-induced Raf-1 activity are blocked in the presence of forskolin or 8-bromo-cAMP by 80%. The actions of increased cAMP appear to be mediated by cAMP-dependent protein kinase (PKA), since treatment with H-89, a the specific inhibitor of PKA, reversed the inhibitory effect of elevated cAMP levels on mitogen-induced cell proliferation and Raf/MAPK activation. Moreover, elevations in cAMP/PKA activity inhibit mitogen-induced cell proliferation. These findings demonstrate, in cultured endothelial cells, that the cAMP/PKA signaling pathway is potentially an important physiological inhibitor of mitogen activation of the MAPK cascade and cell proliferation. J. Cell. Biochem. 67:353-366, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...